NikhilPatil's picture
Update app.py
78dcac1 verified
raw
history blame
9.04 kB
# ===================== IMPORTS =====================
import streamlit as st
import os
import json
import difflib
import pickle
import torch
import numpy as np
from PIL import Image
from tensorflow.keras.models import load_model # ✅ FIXED
from tensorflow.keras.preprocessing.image import img_to_array, load_img # ✅ FIXED
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint # optional, if used
from transformers import CLIPProcessor, CLIPModel
from sentence_transformers import SentenceTransformer, CrossEncoder
from langdetect import detect
# ===================== PATHS =====================
Main_py = "Main_py"
model_path = os.path.join(Main_py, "best_cnn_model_finetuned.keras")
label_path = os.path.join(Main_py, "label_encoder.pkl")
json_path = os.path.join(Main_py, "banana_disease_knowledge_base_updated_shuffled.json")
# ===================== LOAD MODELS & DATA =====================
@st.cache_resource
def load_cnn_clip_kb():
model = load_model(model_path) # ✅ FIXED
with open(label_path, "rb") as f:
le = pickle.load(f)
with open(json_path, "r", encoding="utf-8") as f:
kb_data = json.load(f)
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
return model, le, kb_data, clip_model, clip_processor
@st.cache_resource
def load_nlp_models():
embedder = SentenceTransformer("sentence-transformers/paraphrase-xlm-r-multilingual-v1")
cross_encoder = CrossEncoder("cross-encoder/mmarco-mMiniLMv2-L12-H384-v1")
return embedder, cross_encoder
model, le, kb_data, clip_model, clip_processor = load_cnn_clip_kb()
embedder, cross_encoder = load_nlp_models()
# ===================== CLIP FILTER =====================
def verify_image_with_clip(image_path):
prompts = ["a photo of a banana leaf", "a photo of something that is not a banana leaf"]
try:
image = Image.open(image_path).convert("RGB")
except Exception as e:
return ('REJECTED', f'Invalid image file: {e}', 0.0)
inputs = clip_processor(text=prompts, images=image, return_tensors="pt", padding=True)
with torch.no_grad():
outputs = clip_model(**inputs)
probs = outputs.logits_per_image.softmax(dim=1).cpu().numpy()[0]
banana_score, not_banana_score = probs[0], probs[1]
rejection_factor = 3.0
if banana_score >= not_banana_score * rejection_factor:
return ('ACCEPTED', 'banana leaf', banana_score)
else:
return ('REJECTED', 'Not a banana leaf', not_banana_score)
# ===================== CNN PREDICTION =====================
def predict_disease(image_path, target_size=(224, 224)):
image = load_img(image_path, target_size=target_size)
img_array = img_to_array(image) / 255.0
img_array = np.expand_dims(img_array, axis=0)
preds = model.predict(img_array)[0]
idx = np.argmax(preds)
label = le.inverse_transform([idx])[0]
confidence = preds[idx]
return label, confidence, image
# ===================== FUZZY MARATHI OUTPUT =====================
def match_disease_name_fuzzy(predicted_name):
disease_names = [entry["Disease"].strip().lower() for entry in kb_data]
matches = difflib.get_close_matches(predicted_name.strip().lower(), disease_names, n=1, cutoff=0.5)
if matches:
for entry in kb_data:
if entry["Disease"].strip().lower() == matches[0]:
return entry
return None
def get_marathi_recommendation_fuzzy(predicted_disease, confidence=None):
entry = match_disease_name_fuzzy(predicted_disease)
if entry:
return {
"पिक": entry.get("Crop", "केळी"),
"रोग": entry.get("Local_Name", {}).get("mr", predicted_disease),
"लक्षणे": entry.get("Symptoms_MR", ""),
"कारण": entry.get("Cause_MR", ""),
"किटकनाशके": entry.get("Pesticide_MR", ""),
"किटकनाशक शिफारस": entry.get("Pesticide_Recommendation", {}).get("mr", ""),
"नियंत्रण पद्धती": entry.get("Management_MR", ""),
"रोगजन्य घटक": entry.get("Pathogen", ""),
"विश्वासार्हता": f"{confidence:.2%}" if confidence else "N/A"
}
return None
# ===================== NLP PREDICTION =====================
def detect_language(query: str) -> str:
try:
lang = detect(query)
return lang if lang in ["mr", "hi"] else "en"
except:
return "en"
def predict_disease_from_text(query: str):
lang = detect_language(query)
query_emb = embedder.encode([query], normalize_embeddings=True)
symptom_key = f"Symptoms_{lang.upper()}" if lang != "en" else "Symptoms"
pairs = [[query, entry.get(symptom_key, "")] for entry in kb_data]
scores = cross_encoder.predict(pairs)
best_idx = np.argmax(scores)
if scores[best_idx] < 0.2:
return {
"message": {
"mr": "हा रोग आमच्या डेटाबेसमध्ये नाही.",
"hi": "यह रोग हमारे डेटाबेस में नहीं है।",
"en": "This disease is not in our database."
}[lang]
}
entry = kb_data[best_idx]
return {
"पिक": entry.get("Crop", "केळी"),
"रोग": entry["Local_Name"].get(lang, entry["Disease"]),
"लक्षणे": entry.get(symptom_key, ""),
"कारण": entry.get(f"Cause_{lang.upper()}", entry.get("Cause", "")),
"किटकनाशक शिफारस": entry.get("Pesticide_Recommendation", {}).get(lang, ""),
"किटकनाशके": entry.get("Pesticide", ""),
"रोगजन्य घटक": entry.get("Pathogen", ""),
"नियंत्रण पद्धती": entry.get(f"Management_{lang.upper()}", entry.get("Management_Practices", "")),
}
# ===================== STREAMLIT UI =====================
st.set_page_config(page_title="🍌\ Banana Disease Detection (CNN + NLP)", layout="centered")
st.title(" केळीच्या पानांवरील रोगांचे निदान")
st.markdown("प्रतिमा किंवा लक्षणे वापरून केळीवरील रोगांचे निदान करा (मराठी, हिंदी, इंग्रजी भाषांमध्ये).")
option = st.radio("इनपुट पद्धत निवडा:", ["Image Only", "Text Only", "Both"])
# ===================== IMAGE FLOW =====================
if option in ["Image Only", "Both"]:
st.subheader(" प्रतिमा अपलोड करा")
uploaded_img = st.file_uploader("JPG / PNG", type=["jpg", "jpeg", "png"])
if uploaded_img:
temp_path = "temp_uploaded.jpg"
with open(temp_path, "wb") as f:
f.write(uploaded_img.getbuffer())
st.image(temp_path, caption="अपलोड केलेली प्रतिमा", use_column_width=True)
st.info("CLIP मॉडेलद्वारे पडताळणी करत आहे...")
status, reason, clip_conf = verify_image_with_clip(temp_path)
if status == "REJECTED":
st.error(f" CLIP नकार: {reason} [विश्वासार्हता: {clip_conf:.2f}]")
else:
st.success(f" CLIP मंजूरी: शक्यतो केळीचे पान [विश्वासार्हता: {clip_conf:.2f}]")
pred_disease, cnn_conf, img = predict_disease(temp_path)
st.markdown(f"**ओळखलेला रोग:** {pred_disease} (विश्वासार्हता: {cnn_conf:.2%})")
marathi_info = get_marathi_recommendation_fuzzy(pred_disease, cnn_conf)
if marathi_info:
st.subheader(" मराठी शिफारस:")
for k, v in marathi_info.items():
st.markdown(f"**{k}**: {v}")
else:
st.warning(" ज्ञानतळात रोगासाठी माहिती नाही.")
st.image(img, caption=f"{pred_disease} ({cnn_conf:.2%})", use_column_width=True)
os.remove(temp_path)
# ===================== TEXT FLOW =====================
if option in ["Text Only", "Both"]:
st.subheader(" लक्षणे लिहा")
symptoms = st.text_area("लक्षणे (मराठी / हिंदी / इंग्रजी):")
if symptoms and st.button(" रोग ओळखा"):
result = predict_disease_from_text(symptoms)
if "message" in result:
st.warning(result["message"])
else:
st.subheader(" शिफारस:")
for k, v in result.items():
st.markdown(f"**{k}**: {v}")