NikhilPatil commited on
Commit
1bc5efd
·
verified ·
1 Parent(s): f68674b

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +187 -0
  2. requirements.txt +8 -0
app.py ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ===================== IMPORTS =====================
2
+ import streamlit as st
3
+ import os
4
+ import json
5
+ import difflib
6
+ import pickle
7
+ import torch
8
+ import numpy as np
9
+ from PIL import Image
10
+ from tensorflow.keras.models import load_model
11
+ from tensorflow.keras.preprocessing.image import img_to_array, load_img
12
+ from transformers import CLIPProcessor, CLIPModel
13
+ from sentence_transformers import SentenceTransformer, CrossEncoder
14
+ from langdetect import detect
15
+
16
+ # ===================== PATHS =====================
17
+ model_path = os.path.join(Main_py, "best_cnn_model_finetuned.keras")
18
+ label_path = os.path.join(Main_py, "label_encoder.pkl")
19
+ json_path = os.path.join(Main_py, "banana_disease_knowledge_base_updated_shuffled.json")
20
+
21
+ # ===================== LOAD MODELS & DATA =====================
22
+ @st.cache_resource
23
+ def load_cnn_clip_kb():
24
+ model = load_model(model_path)
25
+ with open(label_path, "rb") as f:
26
+ le = pickle.load(f)
27
+ with open(json_path, "r", encoding="utf-8") as f:
28
+ kb_data = json.load(f)
29
+ clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
30
+ clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
31
+ return model, le, kb_data, clip_model, clip_processor
32
+
33
+ @st.cache_resource
34
+ def load_nlp_models():
35
+ embedder = SentenceTransformer("sentence-transformers/paraphrase-xlm-r-multilingual-v1")
36
+ cross_encoder = CrossEncoder("cross-encoder/mmarco-mMiniLMv2-L12-H384-v1")
37
+ return embedder, cross_encoder
38
+
39
+ model, le, kb_data, clip_model, clip_processor = load_cnn_clip_kb()
40
+ embedder, cross_encoder = load_nlp_models()
41
+
42
+ # ===================== CLIP FILTER =====================
43
+ def verify_image_with_clip(image_path):
44
+ prompts = ["a photo of a banana leaf", "a photo of something that is not a banana leaf"]
45
+ try:
46
+ image = Image.open(image_path).convert("RGB")
47
+ except Exception as e:
48
+ return ('REJECTED', f'Invalid image file: {e}', 0.0)
49
+
50
+ inputs = clip_processor(text=prompts, images=image, return_tensors="pt", padding=True)
51
+ with torch.no_grad():
52
+ outputs = clip_model(**inputs)
53
+ probs = outputs.logits_per_image.softmax(dim=1).cpu().numpy()[0]
54
+
55
+ banana_score, not_banana_score = probs[0], probs[1]
56
+ rejection_factor = 3.0
57
+
58
+ if banana_score >= not_banana_score * rejection_factor:
59
+ return ('ACCEPTED', 'banana leaf', banana_score)
60
+ else:
61
+ return ('REJECTED', 'Not a banana leaf', not_banana_score)
62
+
63
+ # ===================== CNN PREDICTION =====================
64
+ def predict_disease(image_path, target_size=(224, 224)):
65
+ image = load_img(image_path, target_size=target_size)
66
+ img_array = img_to_array(image) / 255.0
67
+ img_array = np.expand_dims(img_array, axis=0)
68
+ preds = model.predict(img_array)[0]
69
+ idx = np.argmax(preds)
70
+ label = le.inverse_transform([idx])[0]
71
+ confidence = preds[idx]
72
+ return label, confidence, image
73
+
74
+ # ===================== FUZZY MARATHI OUTPUT =====================
75
+ def match_disease_name_fuzzy(predicted_name):
76
+ disease_names = [entry["Disease"].strip().lower() for entry in kb_data]
77
+ matches = difflib.get_close_matches(predicted_name.strip().lower(), disease_names, n=1, cutoff=0.5)
78
+ if matches:
79
+ for entry in kb_data:
80
+ if entry["Disease"].strip().lower() == matches[0]:
81
+ return entry
82
+ return None
83
+
84
+ def get_marathi_recommendation_fuzzy(predicted_disease, confidence=None):
85
+ entry = match_disease_name_fuzzy(predicted_disease)
86
+ if entry:
87
+ return {
88
+ "पिक": entry.get("Crop", "केळी"),
89
+ "रोग": entry.get("Local_Name", {}).get("mr", predicted_disease),
90
+ "लक्षणे": entry.get("Symptoms_MR", ""),
91
+ "कारण": entry.get("Cause_MR", ""),
92
+ "किटकनाशके": entry.get("Pesticide_MR", ""),
93
+ "किटकनाशक शिफारस": entry.get("Pesticide_Recommendation", {}).get("mr", ""),
94
+ "नियंत्रण पद्धती": entry.get("Management_MR", ""),
95
+ "रोगजन्य घटक": entry.get("Pathogen", ""),
96
+ "विश्वासार्हता": f"{confidence:.2%}" if confidence else "N/A"
97
+ }
98
+ return None
99
+
100
+ # ===================== NLP PREDICTION =====================
101
+ def detect_language(query: str) -> str:
102
+ try:
103
+ lang = detect(query)
104
+ return lang if lang in ["mr", "hi"] else "en"
105
+ except:
106
+ return "en"
107
+
108
+ def predict_disease_from_text(query: str):
109
+ lang = detect_language(query)
110
+ query_emb = embedder.encode([query], normalize_embeddings=True)
111
+
112
+ symptom_key = f"Symptoms_{lang.upper()}" if lang != "en" else "Symptoms"
113
+ pairs = [[query, entry.get(symptom_key, "")] for entry in kb_data]
114
+ scores = cross_encoder.predict(pairs)
115
+ best_idx = np.argmax(scores)
116
+
117
+ if scores[best_idx] < 0.2:
118
+ return {
119
+ "message": {
120
+ "mr": "हा रोग आमच्या डेटा���ेसमध्ये नाही.",
121
+ "hi": "यह रोग हमारे डेटाबेस में नहीं है।",
122
+ "en": "This disease is not in our database."
123
+ }[lang]
124
+ }
125
+
126
+ entry = kb_data[best_idx]
127
+ return {
128
+ "पिक": entry.get("Crop", "केळी"),
129
+ "रोग": entry["Local_Name"].get(lang, entry["Disease"]),
130
+ "लक्षणे": entry.get(symptom_key, ""),
131
+ "कारण": entry.get(f"Cause_{lang.upper()}", entry.get("Cause", "")),
132
+ "किटकनाशक शिफारस": entry.get("Pesticide_Recommendation", {}).get(lang, ""),
133
+ "किटकनाशके": entry.get("Pesticide", ""),
134
+ "रोगजन्य घटक": entry.get("Pathogen", ""),
135
+ "नियंत्रण पद्धती": entry.get(f"Management_{lang.upper()}", entry.get("Management_Practices", "")),
136
+ }
137
+
138
+ # ===================== STREAMLIT UI =====================
139
+ st.set_page_config(page_title="🍌\ Banana Disease Detection (CNN + NLP)", layout="centered")
140
+ st.title(" केळीच्या पानांवरील रोगांचे निदान")
141
+ st.markdown("प्रतिमा किंवा लक्षणे वापरून केळीवरील रोगांचे निदान करा (मराठी, हिंदी, इंग्रजी भाषांमध्ये).")
142
+
143
+ option = st.radio("इनपुट पद्धत निवडा:", ["Image Only", "Text Only", "Both"])
144
+
145
+ # ===================== IMAGE FLOW =====================
146
+ if option in ["Image Only", "Both"]:
147
+ st.subheader(" प्रतिमा अपलोड करा")
148
+ uploaded_img = st.file_uploader("JPG / PNG", type=["jpg", "jpeg", "png"])
149
+ if uploaded_img:
150
+ temp_path = "temp_uploaded.jpg"
151
+ with open(temp_path, "wb") as f:
152
+ f.write(uploaded_img.getbuffer())
153
+
154
+ st.image(temp_path, caption="अपलोड केलेली प्रतिमा", use_column_width=True)
155
+ st.info("CLIP मॉडेलद्वारे पडताळणी करत आहे...")
156
+
157
+ status, reason, clip_conf = verify_image_with_clip(temp_path)
158
+ if status == "REJECTED":
159
+ st.error(f" CLIP नकार: {reason} [विश्वासार्हता: {clip_conf:.2f}]")
160
+ else:
161
+ st.success(f" CLIP मंजूरी: शक्यतो केळीचे पान [विश्वासार्हता: {clip_conf:.2f}]")
162
+ pred_disease, cnn_conf, img = predict_disease(temp_path)
163
+ st.markdown(f"**ओळखलेला रोग:** {pred_disease} (विश्वासार्हता: {cnn_conf:.2%})")
164
+
165
+ marathi_info = get_marathi_recommendation_fuzzy(pred_disease, cnn_conf)
166
+ if marathi_info:
167
+ st.subheader(" मराठी शिफारस:")
168
+ for k, v in marathi_info.items():
169
+ st.markdown(f"**{k}**: {v}")
170
+ else:
171
+ st.warning(" ज्ञानतळात रोगासाठी माहिती नाही.")
172
+ st.image(img, caption=f"{pred_disease} ({cnn_conf:.2%})", use_column_width=True)
173
+
174
+ os.remove(temp_path)
175
+
176
+ # ===================== TEXT FLOW =====================
177
+ if option in ["Text Only", "Both"]:
178
+ st.subheader(" लक्षणे लिहा")
179
+ symptoms = st.text_area("लक्षणे (मराठी / हिंदी / इंग्रजी):")
180
+ if symptoms and st.button(" रोग ओळखा"):
181
+ result = predict_disease_from_text(symptoms)
182
+ if "message" in result:
183
+ st.warning(result["message"])
184
+ else:
185
+ st.subheader(" शिफारस:")
186
+ for k, v in result.items():
187
+ st.markdown(f"**{k}**: {v}")
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ tensorflow==2.18.0
2
+ torch==2.6.0+cu124
3
+ transformers==4.54.0
4
+ joblib==1.5.1
5
+ opencv-python-headless== 4.12.0.88
6
+ numpy==2.0.2
7
+ matplotlib==3.10.0
8
+ pandas==2.2.2