File size: 21,591 Bytes
13e0db0
 
ba19d43
 
 
 
 
 
65a882e
 
 
 
 
 
 
 
 
 
 
 
 
13e0db0
ba19d43
 
 
 
4c9c9b7
 
ba19d43
4c9c9b7
 
ba19d43
4c9c9b7
 
 
 
 
 
 
 
 
 
ba19d43
 
ba0d729
4c9c9b7
 
fe28ed1
 
 
ba0d729
 
 
4c9c9b7
f775172
 
 
 
 
 
 
 
 
 
 
 
 
4c9c9b7
 
 
 
 
 
ba19d43
 
13e0db0
ba19d43
 
13e0db0
ba19d43
4c9c9b7
ba19d43
 
 
4c9c9b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba19d43
 
 
 
 
 
 
 
13e0db0
ba19d43
ba0d729
ba19d43
 
4c9c9b7
ba0d729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba19d43
d96ffce
 
ba19d43
 
 
 
 
 
 
13e0db0
f775172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba19d43
4c9c9b7
ba19d43
 
 
 
 
4c9c9b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba19d43
 
 
 
 
13e0db0
ba19d43
ba0d729
ba19d43
d96ffce
 
 
 
ba19d43
 
 
ba0d729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba19d43
d96ffce
ba19d43
 
 
d96ffce
ba19d43
13e0db0
f775172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba19d43
a6e2644
ba19d43
 
 
 
 
a6e2644
ba19d43
a6e2644
 
 
 
 
ba19d43
 
 
 
 
 
 
 
 
 
 
 
 
13e0db0
ba19d43
 
 
 
 
 
a6e2644
 
 
 
 
ba19d43
 
a6e2644
 
 
 
13e0db0
ba19d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13e0db0
ba19d43
 
 
13e0db0
ba19d43
 
4c9c9b7
ba19d43
 
 
 
 
 
 
a6e2644
 
ba19d43
 
 
 
 
 
 
 
 
 
 
a6e2644
ba19d43
 
 
 
 
a6e2644
ba19d43
 
4c9c9b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba19d43
 
13e0db0
ba19d43
 
 
ba0d729
ba19d43
 
 
 
 
 
 
 
 
 
4c9c9b7
ba19d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f775172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13e0db0
ba19d43
13e0db0
ba19d43
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from diffusers import StableDiffusionPipeline, DiffusionPipeline
import requests
from PIL import Image
import io
import base64
import os
from huggingface_hub import login

# Configurar autenticación con Hugging Face
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
    try:
        login(token=HF_TOKEN)
        print("✅ Autenticado con Hugging Face")
    except Exception as e:
        print(f"⚠️ Error de autenticación: {e}")
else:
    print("⚠️ No se encontró HF_TOKEN - modelos gated no estarán disponibles")

# Configuración de modelos libres
MODELS = {
    "text": {
        "microsoft/DialoGPT-medium": "Chat conversacional",
        "microsoft/DialoGPT-large": "Chat conversacional avanzado",
        "microsoft/DialoGPT-small": "Chat conversacional rápido",
        "gpt2": "Generación de texto",
        "gpt2-medium": "GPT-2 mediano",
        "gpt2-large": "GPT-2 grande",
        "distilgpt2": "GPT-2 optimizado",
        "EleutherAI/gpt-neo-125M": "GPT-Neo pequeño",
        "EleutherAI/gpt-neo-1.3B": "GPT-Neo mediano",
        "microsoft/DialoGPT-medium": "Chat conversacional",
        "facebook/opt-125m": "OPT pequeño",
        "facebook/opt-350m": "OPT mediano",
        "bigscience/bloom-560m": "BLOOM multilingüe",
        "bigscience/bloom-1b1": "BLOOM grande",
        "microsoft/DialoGPT-medium": "Chat conversacional",
        "Helsinki-NLP/opus-mt-es-en": "Traductor español-inglés",
        "Helsinki-NLP/opus-mt-en-es": "Traductor inglés-español"
    },
    "image": {
        "CompVis/stable-diffusion-v1-4": "Stable Diffusion v1.4 (Libre)",
        "stabilityai/stable-diffusion-2-1": "Stable Diffusion 2.1",
        "stabilityai/stable-diffusion-xl-base-1.0": "SDXL Base",
        "stabilityai/stable-diffusion-3-medium": "SD 3 Medium",
        "prompthero/openjourney": "Midjourney Style",
        "WarriorMama777/OrangeMixs": "Orange Mixs",
        "hakurei/waifu-diffusion": "Waifu Diffusion",
        "black-forest-labs/FLUX.1-schnell": "FLUX.1 Schnell (Requiere acceso)",
        "black-forest-labs/FLUX.1-dev": "FLUX.1 Dev (Requiere acceso)"
    },
    "video": {
        "damo-vilab/text-to-video-ms-1.7b": "Text-to-Video MS 1.7B (Libre)",
        "ali-vilab/text-to-video-ms-1.7b": "Text-to-Video MS 1.7B Alt",
        "cerspense/zeroscope_v2_576w": "Zeroscope v2 576w (Libre)",
        "cerspense/zeroscope_v2_XL": "Zeroscope v2 XL (Libre)",
        "damo-vilab/text-to-video-ms-1.7b": "Text-to-Video MS 1.7B",
        "ali-vilab/text-to-video-ms-1.7b": "Text-to-Video MS 1.7B Alt",
        "cerspense/zeroscope_v2_576w": "Zeroscope v2 576w",
        "cerspense/zeroscope_v2_XL": "Zeroscope v2 XL",
        "ByteDance/AnimateDiff-Lightning": "AnimateDiff Lightning (Libre)",
        "THUDM/CogVideoX-5b": "CogVideoX 5B (Libre)",
        "rain1011/pyramid-flow-sd3": "Pyramid Flow SD3 (Libre)"
    },
    "chat": {
        "microsoft/DialoGPT-medium": "Chat conversacional",
        "microsoft/DialoGPT-large": "Chat conversacional avanzado",
        "microsoft/DialoGPT-small": "Chat conversacional rápido",
        "facebook/opt-350m": "OPT conversacional",
        "bigscience/bloom-560m": "BLOOM multilingüe"
    }
}

# Cache para los modelos
model_cache = {}

def load_text_model(model_name):
    """Cargar modelo de texto con soporte para diferentes tipos"""
    if model_name not in model_cache:
        print(f"Cargando modelo de texto: {model_name}")
        
        # Detectar tipo de modelo
        if "opus-mt" in model_name.lower():
            # Modelo de traducción
            from transformers import MarianMTModel, MarianTokenizer
            tokenizer = MarianTokenizer.from_pretrained(model_name)
            model = MarianMTModel.from_pretrained(model_name)
        else:
            # Modelo de generación de texto
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            model = AutoModelForCausalLM.from_pretrained(model_name)
            
            # Configurar para chat si es DialoGPT
            if "dialogpt" in model_name.lower():
                tokenizer.pad_token = tokenizer.eos_token
                model.config.pad_token_id = model.config.eos_token_id
        
        model_cache[model_name] = {
            "tokenizer": tokenizer,
            "model": model,
            "type": "text"
        }
    
    return model_cache[model_name]

def load_image_model(model_name):
    """Cargar modelo de imagen - versión simplificada con soporte para FLUX"""
    if model_name not in model_cache:
        print(f"Cargando modelo de imagen: {model_name}")
        
        # Configuración especial para FLUX
        if "flux" in model_name.lower():
            try:
                from diffusers import FluxPipeline
                pipe = FluxPipeline.from_pretrained(
                    model_name,
                    torch_dtype=torch.bfloat16
                )
                pipe.enable_model_cpu_offload()
            except Exception as e:
                print(f"Error cargando FLUX: {e}")
                # Fallback a Stable Diffusion
                pipe = StableDiffusionPipeline.from_pretrained(
                    "CompVis/stable-diffusion-v1-4",
                    torch_dtype=torch.float32,
                    safety_checker=None
                )
        else:
            # Configuración básica para otros modelos
            pipe = StableDiffusionPipeline.from_pretrained(
                model_name,
                torch_dtype=torch.float32,
                safety_checker=None
            )
        
        # Solo optimización básica de memoria
        pipe.enable_attention_slicing()
        
        model_cache[model_name] = {
            "pipeline": pipe,
            "type": "image"
        }
    
    return model_cache[model_name]

def load_video_model(model_name):
    """Cargar modelo de video con soporte para diferentes tipos"""
    if model_name not in model_cache:
        print(f"Cargando modelo de video: {model_name}")
        
        try:
            # Detectar tipo de modelo de video
            if "text-to-video" in model_name.lower():
                # Modelos de texto a video
                from diffusers import DiffusionPipeline
                pipe = DiffusionPipeline.from_pretrained(
                    model_name,
                    torch_dtype=torch.float32,
                    variant="fp16"
                )
            elif "zeroscope" in model_name.lower():
                # Zeroscope models
                from diffusers import DiffusionPipeline
                pipe = DiffusionPipeline.from_pretrained(
                    model_name,
                    torch_dtype=torch.float32
                )
            elif "animatediff" in model_name.lower():
                # AnimateDiff models
                from diffusers import DiffusionPipeline
                pipe = DiffusionPipeline.from_pretrained(
                    model_name,
                    torch_dtype=torch.float32
                )
            else:
                # Fallback a text-to-video genérico
                from diffusers import DiffusionPipeline
                pipe = DiffusionPipeline.from_pretrained(
                    model_name,
                    torch_dtype=torch.float32
                )
            
            # Optimizaciones básicas
            pipe.enable_attention_slicing()
            pipe.enable_model_cpu_offload()
            
            model_cache[model_name] = {
                "pipeline": pipe,
                "type": "video"
            }
            
        except Exception as e:
            print(f"Error cargando modelo de video {model_name}: {e}")
            # Fallback a un modelo básico
            from diffusers import DiffusionPipeline
            pipe = DiffusionPipeline.from_pretrained(
                "damo-vilab/text-to-video-ms-1.7b",
                torch_dtype=torch.float32
            )
            pipe.enable_attention_slicing()
            
            model_cache[model_name] = {
                "pipeline": pipe,
                "type": "video"
            }
    
    return model_cache[model_name]

def generate_text(prompt, model_name, max_length=100):
    """Generar texto con el modelo seleccionado - mejorado para diferentes tipos"""
    try:
        model_data = load_text_model(model_name)
        tokenizer = model_data["tokenizer"]
        model = model_data["model"]
        
        # Detectar si es modelo de traducción
        if "opus-mt" in model_name.lower():
            # Traducción
            inputs = tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True)
            with torch.no_grad():
                outputs = model.generate(inputs, max_length=max_length, num_beams=4, early_stopping=True)
            response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        else:
            # Generación de texto
            inputs = tokenizer.encode(prompt, return_tensors="pt")
            
            # Generar
            with torch.no_grad():
                outputs = model.generate(
                    inputs,
                    max_length=max_length,
                    num_return_sequences=1,
                    temperature=0.7,
                    do_sample=True,
                    pad_token_id=tokenizer.eos_token_id
                )
            
            # Decodificar respuesta
            response = tokenizer.decode(outputs[0], skip_special_tokens=True)
            
            # Para DialoGPT, extraer solo la respuesta del asistente
            if "dialogpt" in model_name.lower():
                response = response.replace(prompt, "").strip()
        
        return response
    
    except Exception as e:
        return f"Error generando texto: {str(e)}"

def generate_image(prompt, model_name, num_inference_steps=20):
    """Generar imagen con el modelo seleccionado - versión simplificada con soporte para FLUX"""
    try:
        print(f"Generando imagen con modelo: {model_name}")
        print(f"Prompt: {prompt}")
        print(f"Pasos: {num_inference_steps}")
        
        model_data = load_image_model(model_name)
        pipeline = model_data["pipeline"]
        
        # Configuración específica para FLUX
        if "flux" in model_name.lower():
            image = pipeline(
                prompt,
                guidance_scale=0.0,
                num_inference_steps=4,  # FLUX usa solo 4 pasos
                max_sequence_length=256,
                generator=torch.Generator("cpu").manual_seed(0)
            ).images[0]
        else:
            # Configuración básica para otros modelos
            image = pipeline(
                prompt,
                num_inference_steps=num_inference_steps,
                guidance_scale=7.5
            ).images[0]
        
        print("Imagen generada exitosamente")
        return image
    
    except Exception as e:
        print(f"Error generando imagen: {str(e)}")
        return f"Error generando imagen: {str(e)}"

def generate_video(prompt, model_name, num_frames=16, num_inference_steps=20):
    """Generar video con el modelo seleccionado"""
    try:
        print(f"Generando video con modelo: {model_name}")
        print(f"Prompt: {prompt}")
        print(f"Frames: {num_frames}")
        print(f"Pasos: {num_inference_steps}")
        
        model_data = load_video_model(model_name)
        pipeline = model_data["pipeline"]
        
        # Configuración específica por tipo de modelo
        if "zeroscope" in model_name.lower():
            # Zeroscope models
            video_frames = pipeline(
                prompt,
                num_inference_steps=num_inference_steps,
                num_frames=num_frames,
                height=256,
                width=256
            ).frames
        elif "animatediff" in model_name.lower():
            # AnimateDiff models
            video_frames = pipeline(
                prompt,
                num_inference_steps=num_inference_steps,
                num_frames=num_frames
            ).frames
        else:
            # Text-to-video models (default)
            video_frames = pipeline(
                prompt,
                num_inference_steps=num_inference_steps,
                num_frames=num_frames
            ).frames
        
        print("Video generado exitosamente")
        return video_frames
    
    except Exception as e:
        print(f"Error generando video: {str(e)}")
        return f"Error generando video: {str(e)}"

def chat_with_model(message, history, model_name):
    """Función de chat para DialoGPT con formato de mensajes actualizado"""
    try:
        model_data = load_text_model(model_name)
        tokenizer = model_data["tokenizer"]
        model = model_data["model"]
        
        # Construir historial de conversación desde el nuevo formato
        conversation = ""
        for msg in history:
            if msg["role"] == "user":
                conversation += f"User: {msg['content']}\n"
            elif msg["role"] == "assistant":
                conversation += f"Assistant: {msg['content']}\n"
        
        conversation += f"User: {message}\nAssistant:"
        
        # Generar respuesta
        inputs = tokenizer.encode(conversation, return_tensors="pt", truncation=True, max_length=512)
        
        with torch.no_grad():
            outputs = model.generate(
                inputs,
                max_length=inputs.shape[1] + 50,
                temperature=0.7,
                do_sample=True,
                pad_token_id=tokenizer.eos_token_id
            )
        
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        # Extraer solo la respuesta del asistente
        response = response.split("Assistant:")[-1].strip()
        
        # Retornar el historial actualizado con el nuevo formato
        history.append({"role": "user", "content": message})
        history.append({"role": "assistant", "content": response})
        
        return history
    
    except Exception as e:
        error_msg = f"Error en el chat: {str(e)}"
        history.append({"role": "user", "content": message})
        history.append({"role": "assistant", "content": error_msg})
        return history

# Interfaz de Gradio
with gr.Blocks(title="Modelos Libres de IA", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# 🤖 Modelos Libres de IA")
    gr.Markdown("### Genera texto e imágenes sin límites de cuota")
    
    with gr.Tabs():
        # Tab de Generación de Texto
        with gr.TabItem("📝 Generación de Texto"):
            with gr.Row():
                with gr.Column():
                    text_model = gr.Dropdown(
                        choices=list(MODELS["text"].keys()),
                        value="microsoft/DialoGPT-medium",
                        label="Modelo de Texto"
                    )
                    text_prompt = gr.Textbox(
                        label="Prompt",
                        placeholder="Escribe tu prompt aquí...",
                        lines=3
                    )
                    max_length = gr.Slider(
                        minimum=50,
                        maximum=200,
                        value=100,
                        step=10,
                        label="Longitud máxima"
                    )
                    text_btn = gr.Button("Generar Texto", variant="primary")
                
                with gr.Column():
                    text_output = gr.Textbox(
                        label="Resultado",
                        lines=10,
                        interactive=False
                    )
            
            text_btn.click(
                generate_text,
                inputs=[text_prompt, text_model, max_length],
                outputs=text_output
            )
        
        # Tab de Chat
        with gr.TabItem("💬 Chat"):
            with gr.Row():
                with gr.Column():
                    chat_model = gr.Dropdown(
                        choices=list(MODELS["chat"].keys()),
                        value="microsoft/DialoGPT-medium",
                        label="Modelo de Chat"
                    )
                
                with gr.Column():
                    chatbot = gr.Chatbot(
                        label="Chat",
                        height=400,
                        type="messages"
                    )
                    chat_input = gr.Textbox(
                        label="Mensaje",
                        placeholder="Escribe tu mensaje...",
                        lines=2
                    )
                    chat_btn = gr.Button("Enviar", variant="primary")
            
            chat_btn.click(
                chat_with_model,
                inputs=[chat_input, chatbot, chat_model],
                outputs=[chatbot]
            )
            
            chat_input.submit(
                chat_with_model,
                inputs=[chat_input, chatbot, chat_model],
                outputs=[chatbot]
            )
        
        # Tab de Traducción
        with gr.TabItem("🌐 Traducción"):
            with gr.Row():
                with gr.Column():
                    translate_model = gr.Dropdown(
                        choices=["Helsinki-NLP/opus-mt-es-en", "Helsinki-NLP/opus-mt-en-es"],
                        value="Helsinki-NLP/opus-mt-es-en",
                        label="Modelo de Traducción"
                    )
                    translate_text = gr.Textbox(
                        label="Texto a traducir",
                        placeholder="Escribe el texto que quieres traducir...",
                        lines=3
                    )
                    translate_btn = gr.Button("Traducir", variant="primary")
                
                with gr.Column():
                    translate_output = gr.Textbox(
                        label="Traducción",
                        lines=3,
                        interactive=False
                    )
            
            translate_btn.click(
                generate_text,
                inputs=[translate_text, translate_model, gr.Slider(value=100, visible=False)],
                outputs=translate_output
            )
        
        # Tab de Generación de Imágenes
        with gr.TabItem("🎨 Generación de Imágenes"):
            with gr.Row():
                with gr.Column():
                    image_model = gr.Dropdown(
                        choices=list(MODELS["image"].keys()),
                        value="CompVis/stable-diffusion-v1-4",
                        label="Modelo de Imagen"
                    )
                    image_prompt = gr.Textbox(
                        label="Prompt de Imagen",
                        placeholder="Describe la imagen que quieres generar...",
                        lines=3
                    )
                    steps = gr.Slider(
                        minimum=10,
                        maximum=50,
                        value=15,
                        step=5,
                        label="Pasos de inferencia"
                    )
                    image_btn = gr.Button("Generar Imagen", variant="primary")
                
                with gr.Column():
                    image_output = gr.Image(
                        label="Imagen Generada",
                        type="pil"
                    )
            
            image_btn.click(
                generate_image,
                inputs=[image_prompt, image_model, steps],
                outputs=image_output
            )
        
        # Tab de Generación de Videos
        with gr.TabItem("🎬 Generación de Videos"):
            with gr.Row():
                with gr.Column():
                    video_model = gr.Dropdown(
                        choices=list(MODELS["video"].keys()),
                        value="damo-vilab/text-to-video-ms-1.7b",
                        label="Modelo de Video"
                    )
                    video_prompt = gr.Textbox(
                        label="Prompt de Video",
                        placeholder="Describe el video que quieres generar...",
                        lines=3
                    )
                    num_frames = gr.Slider(
                        minimum=8,
                        maximum=32,
                        value=16,
                        step=4,
                        label="Número de frames"
                    )
                    video_steps = gr.Slider(
                        minimum=10,
                        maximum=50,
                        value=20,
                        step=5,
                        label="Pasos de inferencia"
                    )
                    video_btn = gr.Button("Generar Video", variant="primary")
                
                with gr.Column():
                    video_output = gr.Video(
                        label="Video Generado",
                        format="mp4"
                    )
            
            video_btn.click(
                generate_video,
                inputs=[video_prompt, video_model, num_frames, video_steps],
                outputs=video_output
            )

# Configuración para Hugging Face Spaces
if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False
    )