import gradio as gr import torch from transformers import pipeline # Load the Whisper pipeline transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base") # Choose your Whisper size def transcribe_audio(audio_file): if audio_file is not None: text = transcriber(audio_file)["text"] return text else: return "No audio file uploaded" with gr.Blocks() as demo: gr.Markdown("## Audio Transcription with Whisper") audio_input = gr.Audio(type="filepath", label="Upload Audio File") text_output = gr.Textbox(label="Transcription") btn = gr.Button("Transcribe") btn.click(transcribe_audio, inputs=audio_input, outputs=text_output, return_timestamps=True) demo.launch()