Spaces:
Runtime error
Runtime error
from joblib import dump,load | |
import pandas as pd | |
import warnings | |
import gradio as gr | |
import cv2 | |
warnings.filterwarnings("ignore") | |
small_X_train_flatten = pd.read_csv('Homework01_trainX_image_flatten.csv') | |
small_y_train = pd.read_csv('Homework01_trainy_image_flatten.csv') | |
best_knn = load("best_knn.joblib") | |
best_log = load("best_log.joblib") | |
best_knn.fit(small_X_train_flatten,small_y_train) | |
best_log.fit(small_X_train_flatten,small_y_train) | |
def preprocess_image(image): | |
resized_image = cv2.resize(image, (28, 28)) | |
grayscale_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2GRAY) | |
flattened_image = grayscale_image.flatten() | |
normalized_image = flattened_image / 255.0 | |
return normalized_image | |
class_names = [ | |
"T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", | |
"Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot" | |
] | |
def classify_image(input_image, classifier): | |
preprocessed_image = preprocess_image(input_image) | |
reshaped_image = preprocessed_image.reshape(1, -1) | |
if classifier == "Logistic Regression": | |
output1 = best_log.predict(reshaped_image)[0] | |
output2 = dict(zip(class_names, best_log.predict_proba(reshaped_image)[0])) | |
elif classifier == "K-Nearest Neighbors": | |
output1 = best_knn.predict(reshaped_image)[0] | |
output2 = dict(zip(class_names, best_knn.predict_proba(reshaped_image)[0])) | |
return class_names[output1], output2 | |
gr.Interface( | |
fn=classify_image, | |
title="Fashion MNIST Classifier", | |
inputs=[ | |
gr.Image(type="numpy", label="Input Image"), | |
gr.Dropdown( | |
label="Select Classifiers", | |
choices=["Logistic Regression", "K-Nearest Neighbors"] | |
) | |
], | |
outputs=[ | |
gr.Textbox(label="Predicted Class"), | |
gr.Label(label="Predicted Label Distribution") | |
] | |
).launch(share=True) | |