Spaces:
Running
Running
| import numpy as np | |
| import tensorflow as tf | |
| from tensorflow.keras import layers | |
| import sentencepiece as spm | |
| import gradio as gr | |
| import requests | |
| import os | |
| # ---------------------- | |
| # ํ์ผ ๋ค์ด๋ก๋ ์ ํธ | |
| # ---------------------- | |
| def download_file(url, save_path): | |
| r = requests.get(url, stream=True) | |
| r.raise_for_status() | |
| with open(save_path, "wb") as f: | |
| for chunk in r.iter_content(8192*2): | |
| f.write(chunk) | |
| print(f"โ {save_path} ์ ์ฅ๋จ") | |
| MODEL_PATH = "encoder.weights.h5" | |
| TOKENIZER_PATH = "bpe.model" | |
| if not os.path.exists(MODEL_PATH): | |
| download_file( | |
| "https://huggingface.co/OpenLab-NLP/openlem1/resolve/main/encoder.weights.h5?download=true", | |
| MODEL_PATH | |
| ) | |
| if not os.path.exists(TOKENIZER_PATH): | |
| download_file( | |
| "https://huggingface.co/OpenLab-NLP/openlem1/resolve/main/bpe.model?download=true", | |
| TOKENIZER_PATH | |
| ) | |
| MAX_LEN = 128 | |
| EMBED_DIM = 384 | |
| LATENT_DIM = 384 | |
| DROPOUT_RATE = 0.01 | |
| # =============================== | |
| # 1๏ธโฃ ํ ํฌ๋์ด์ ๋ก๋ฉ | |
| # =============================== | |
| sp = spm.SentencePieceProcessor(TOKENIZER_PATH) | |
| pad_id = sp.piece_to_id("<pad>") if sp.piece_to_id("<pad>") != -1 else 0 | |
| vocab_size = sp.get_piece_size() | |
| def encode_sentence(sentence, max_len=MAX_LEN): | |
| return sp.encode(sentence, out_type=int)[:max_len] | |
| def pad_sentence(tokens): | |
| return tokens + [pad_id]*(MAX_LEN - len(tokens)) | |
| class EncoderBlock(layers.Layer): | |
| def __init__(self, embed_dim=EMBED_DIM, latent_dim=LATENT_DIM): | |
| super().__init__() # โ ๋ฐ๋์ ๋งจ ์์ ์ถ๊ฐ | |
| self.mha = layers.MultiHeadAttention(num_heads=8, key_dim=embed_dim//8) | |
| self.WB = layers.Dense(1152) | |
| self.W = layers.Dense(embed_dim) | |
| self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5, dtype=tf.float32) | |
| self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5, dtype=tf.float32) | |
| self.ln3 = tf.keras.layers.LayerNormalization(epsilon=1e-5, dtype=tf.float32) | |
| def call(self, x): | |
| x = self.ln1(x) | |
| attn = self.mha(x, x, x) | |
| x = self.ln2(attn) + x | |
| re = x | |
| w = self.WB(x) | |
| a, b = tf.split(w, 2, axis=-1) | |
| g = tf.nn.silu(a) * b | |
| o = self.W(g) | |
| return self.ln3(o) + re | |
| class L2NormLayer(layers.Layer): | |
| def __init__(self, axis=1, epsilon=1e-10, **kwargs): | |
| super().__init__(**kwargs) | |
| self.axis = axis | |
| self.epsilon = epsilon | |
| def call(self, inputs): | |
| return tf.math.l2_normalize(inputs, axis=self.axis, epsilon=self.epsilon) | |
| def get_config(self): | |
| return {"axis": self.axis, "epsilon": self.epsilon, **super().get_config()} | |
| class SentenceEncoder(tf.keras.Model): | |
| def __init__(self, vocab_size, embed_dim=384, latent_dim=384, max_len=128, pad_id=3): | |
| super().__init__() | |
| self.pad_id = pad_id | |
| self.embed = layers.Embedding(vocab_size, embed_dim) | |
| self.pos_embed = layers.Embedding(input_dim=max_len, output_dim=embed_dim) | |
| self.blocks = [EncoderBlock(embed_dim=embed_dim, latent_dim=latent_dim) for _ in range(2)] | |
| self.attn_pool = layers.Dense(1) | |
| self.ln_f = layers.LayerNormalization(epsilon=1e-5, dtype=tf.float32) | |
| self.latent = layers.Dense(latent_dim, activation=None) # tanh ์ ๊ฑฐ | |
| self.l2norm = L2NormLayer() # ์ถ๊ฐ | |
| def call(self, x): | |
| positions = tf.range(tf.shape(x)[1])[tf.newaxis, :] | |
| x_embed = self.embed(x) + self.pos_embed(positions) | |
| mask = tf.cast(tf.not_equal(x, self.pad_id), tf.float32) | |
| x = x_embed | |
| for block in self.blocks: | |
| x = block(x) | |
| x = self.ln_f(x) | |
| scores = self.attn_pool(x) | |
| scores = tf.where(tf.equal(mask[..., tf.newaxis], 0), -1e9, scores) | |
| scores = tf.nn.softmax(scores, axis=1) | |
| pooled = tf.reduce_sum(x * scores, axis=1) | |
| latent = self.latent(pooled) | |
| return self.l2norm(latent) # L2 ์ ๊ทํ | |
| # 3๏ธโฃ ๋ชจ๋ธ ๋ก๋ | |
| # =============================== | |
| encoder = SentenceEncoder(vocab_size=vocab_size) | |
| encoder(np.zeros((1, MAX_LEN), dtype=np.int32)) # ๋ชจ๋ธ ๋น๋ | |
| encoder.load_weights(MODEL_PATH) | |
| # =============================== | |
| # 4๏ธโฃ ๋ฒกํฐํ ํจ์ | |
| # =============================== | |
| def get_sentence_vector(sentence): | |
| tokens = pad_sentence(encode_sentence(sentence)) | |
| vec = encoder(np.array([tokens])).numpy()[0] | |
| return vec / np.linalg.norm(vec) | |
| # =============================== | |
| # 5๏ธโฃ ๊ฐ์ฅ ๋น์ทํ ๋ฌธ์ฅ ์ฐพ๊ธฐ | |
| # =============================== | |
| def find_most_similar(query, s1, s2, s3): | |
| candidates = [s1, s2, s3] | |
| candidate_vectors = np.stack([get_sentence_vector(c) for c in candidates]).astype(np.float32) | |
| query_vector = get_sentence_vector(query) | |
| sims = candidate_vectors @ query_vector # cosine similarity | |
| top_idx = np.argmax(sims) | |
| return { | |
| "๊ฐ์ฅ ๋น์ทํ ๋ฌธ์ฅ": candidates[top_idx], | |
| "์ ์ฌ๋": float(sims[top_idx]) | |
| } | |
| # =============================== | |
| # 6๏ธโฃ Gradio UI | |
| # =============================== | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## ๐ ๋ฌธ์ฅ ์ ์ฌ๋ ๊ฒ์๊ธฐ (์ฟผ๋ฆฌ 1๊ฐ + ํ๋ณด 3๊ฐ)") | |
| with gr.Row(): | |
| query_input = gr.Textbox(label="๊ฒ์ํ ๋ฌธ์ฅ (Query)", placeholder="์ฌ๊ธฐ์ ์ ๋ ฅ") | |
| with gr.Row(): | |
| s1_input = gr.Textbox(label="๊ฒ์ ํ๋ณด 1") | |
| s2_input = gr.Textbox(label="๊ฒ์ ํ๋ณด 2") | |
| s3_input = gr.Textbox(label="๊ฒ์ ํ๋ณด 3") | |
| output = gr.JSON(label="๊ฒฐ๊ณผ") | |
| search_btn = gr.Button("๊ฐ์ฅ ๋น์ทํ ๋ฌธ์ฅ ์ฐพ๊ธฐ") | |
| search_btn.click( | |
| fn=find_most_similar, | |
| inputs=[query_input, s1_input, s2_input, s3_input], | |
| outputs=output | |
| ) | |
| demo.launch() |