OpenLEM / app.py
OpenLab-NLP's picture
Update app.py
5d9caf3 verified
raw
history blame
7.63 kB
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
import sentencepiece as spm
import gradio as gr
import requests
import os
# ----------------------
# 파일 다운로드 유틸
# ----------------------
def download_file(url, save_path):
r = requests.get(url, stream=True)
r.raise_for_status()
with open(save_path, "wb") as f:
for chunk in r.iter_content(8192*2):
f.write(chunk)
print(f"✅ {save_path} 저장됨")
MODEL_PATH = "encoder.weights.h5"
TOKENIZER_PATH = "bpe.model"
if not os.path.exists(MODEL_PATH):
download_file(
"https://huggingface.co/OpenLab-NLP/openlem2/resolve/main/encoder_fit.weights.h5?download=true",
MODEL_PATH
)
if not os.path.exists(TOKENIZER_PATH):
download_file(
"https://huggingface.co/OpenLab-NLP/openlem2/resolve/main/bpe.model?download=true",
TOKENIZER_PATH
)
MAX_LEN = 128
EMBED_DIM = 384
LATENT_DIM = 384
DROP_RATE = 0.1
# ===============================
# 1️⃣ 토크나이저 로딩
# ===============================
sp = spm.SentencePieceProcessor(TOKENIZER_PATH)
pad_id = sp.piece_to_id("<pad>") if sp.piece_to_id("<pad>") != -1 else 0
vocab_size = sp.get_piece_size()
def encode_sentence(sentence, max_len=MAX_LEN):
return sp.encode(sentence, out_type=int)[:max_len]
def pad_sentence(tokens):
return tokens + [pad_id]*(MAX_LEN - len(tokens))
class DynamicConv(layers.Layer):
def __init__(self, k=7):
super().__init__()
assert k % 2 == 1, "kernel size should be odd for symmetric padding"
self.k = k
# generator는 각 토큰에 대해 k개의 로짓을 뱉음 -> softmax로 가중치화
self.generator = layers.Dense(k)
def call(self, x):
# x: (B, L, D)
B = tf.shape(x)[0]
L = tf.shape(x)[1]
D = tf.shape(x)[2]
# (B, L, k) logits -> softmax -> (B, L, k)
kernels = self.generator(x)
kernels = tf.nn.softmax(kernels, axis=-1)
# padding (same)
pad = (self.k - 1) // 2
x_pad = tf.pad(x, [[0, 0], [pad, pad], [0, 0]]) # (B, L+2pad, D)
# extract patches using tf.image.extract_patches:
# make 4D: (B, H=1, W=L+2pad, C=D)
x_pad_4d = tf.expand_dims(x_pad, axis=1)
patches = tf.image.extract_patches(
images=x_pad_4d,
sizes=[1, 1, self.k, 1],
strides=[1, 1, 1, 1],
rates=[1, 1, 1, 1],
padding='VALID'
) # (B, 1, L, k*D)
# reshape -> (B, L, k, D)
patches = tf.reshape(patches, [B, 1, L, self.k * D])
patches = tf.squeeze(patches, axis=1)
patches = tf.reshape(patches, [B, L, self.k, D])
# kernels: (B, L, k) -> (B, L, k, 1)
kernels_exp = tf.expand_dims(kernels, axis=-1)
# weighted sum over kernel dim -> (B, L, D)
out = tf.reduce_sum(patches * kernels_exp, axis=2)
return out
class EncoderBlock(tf.keras.layers.Layer):
def __init__(self, embed_dim=EMBED_DIM, ff_dim=1152, seq_len=MAX_LEN, num_conv_layers=2):
super().__init__()
self.embed_dim = embed_dim
self.seq_len = seq_len
# MLP / FFN
self.fc1 = layers.Dense(ff_dim)
self.fc2 = layers.Dense(embed_dim)
# DynamicConv 블록 여러 개 쌓기
self.blocks = [DynamicConv(k=7) for _ in range(num_conv_layers)]
# LayerNorm
self.ln = layers.LayerNormalization(epsilon=1e-5) # 입력 정규화
self.ln1 = layers.LayerNormalization(epsilon=1e-5) # Conv residual
self.ln2 = layers.LayerNormalization(epsilon=1e-5) # FFN residual
def call(self, x, mask=None):
# 입력 정규화
x_norm = self.ln(x)
# DynamicConv 여러 층 통과
out = x_norm
for block in self.blocks:
out = block(out)
# Conv residual 연결
x = x_norm + self.ln1(out)
# FFN / GLU
v = out
h = self.fc1(v)
g, v_split = tf.split(h, 2, axis=-1)
h = tf.nn.silu(g) * v_split
h = self.fc2(h)
# FFN residual 연결
x = x + self.ln2(h)
return x
class L2NormLayer(layers.Layer):
def __init__(self, axis=1, epsilon=1e-10, **kwargs):
super().__init__(**kwargs)
self.axis = axis
self.epsilon = epsilon
def call(self, inputs):
return tf.math.l2_normalize(inputs, axis=self.axis, epsilon=self.epsilon)
def get_config(self):
return {"axis": self.axis, "epsilon": self.epsilon, **super().get_config()}
class SentenceEncoder(tf.keras.Model):
def __init__(self, vocab_size, embed_dim=384, latent_dim=384, max_len=128, pad_id=pad_id):
super().__init__()
self.pad_id = pad_id
self.embed = layers.Embedding(vocab_size, embed_dim)
self.pos_embed = layers.Embedding(input_dim=max_len, output_dim=embed_dim)
self.blocks = [EncoderBlock() for _ in range(2)]
self.attn_pool = layers.Dense(1)
self.ln_f = layers.LayerNormalization(epsilon=1e-5, dtype=tf.float32)
self.latent = layers.Dense(latent_dim, activation=None) # tanh 제거
self.l2norm = L2NormLayer() # 추가
def call(self, x):
positions = tf.range(tf.shape(x)[1])[tf.newaxis, :]
x_embed = self.embed(x) + self.pos_embed(positions)
mask = tf.cast(tf.not_equal(x, self.pad_id), tf.float32)
x = x_embed
for block in self.blocks:
x = block(x, mask)
x = self.ln_f(x)
scores = self.attn_pool(x)
scores = tf.where(tf.equal(mask[..., tf.newaxis], 0), -1e9, scores)
scores = tf.nn.softmax(scores, axis=1)
pooled = tf.reduce_sum(x * scores, axis=1)
latent = self.latent(pooled)
return self.l2norm(latent) # L2 정규화 후 반환
# 3️⃣ 모델 로드
# ===============================
encoder = SentenceEncoder(vocab_size=vocab_size)
encoder(np.zeros((1, MAX_LEN), dtype=np.int32)) # 모델 빌드
encoder.load_weights(MODEL_PATH)
# ===============================
# 4️⃣ 벡터화 함수
# ===============================
def get_sentence_vector(sentence):
tokens = pad_sentence(encode_sentence(sentence))
vec = encoder(np.array([tokens])).numpy()[0]
return vec / np.linalg.norm(vec)
# ===============================
# 5️⃣ 가장 비슷한 문장 찾기
# ===============================
def find_most_similar(query, s1, s2, s3):
candidates = [s1, s2, s3]
candidate_vectors = np.stack([get_sentence_vector(c) for c in candidates]).astype(np.float32)
query_vector = get_sentence_vector(query)
sims = candidate_vectors @ query_vector # cosine similarity
top_idx = np.argmax(sims)
return {
"가장 비슷한 문장": candidates[top_idx],
"유사도": float(sims[top_idx])
}
# ===============================
# 6️⃣ Gradio UI
# ===============================
with gr.Blocks() as demo:
gr.Markdown("## 🔍 문장 유사도 검색기 (쿼리 1개 + 후보 3개)")
with gr.Row():
query_input = gr.Textbox(label="검색할 문장 (Query)", placeholder="여기에 입력")
with gr.Row():
s1_input = gr.Textbox(label="검색 후보 1")
s2_input = gr.Textbox(label="검색 후보 2")
s3_input = gr.Textbox(label="검색 후보 3")
output = gr.JSON(label="결과")
search_btn = gr.Button("가장 비슷한 문장 찾기")
search_btn.click(
fn=find_most_similar,
inputs=[query_input, s1_input, s2_input, s3_input],
outputs=output
)
demo.launch()