Spaces:
Running
Running
Upload 8 files
Browse files
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
import httpx
|
|
|
|
| 3 |
from fastapi import FastAPI, Request, HTTPException
|
| 4 |
from fastapi.responses import HTMLResponse, JSONResponse
|
| 5 |
from fastapi.staticfiles import StaticFiles
|
|
@@ -69,13 +70,18 @@ async def call_deepseek_api(messages: list, model: str = "deepseek-chat", temper
|
|
| 69 |
detail=error_msg
|
| 70 |
)
|
| 71 |
|
| 72 |
-
# ---
|
| 73 |
@app.post("/generate")
|
| 74 |
async def generate_content(request: Request):
|
| 75 |
"""
|
| 76 |
-
This endpoint uses a
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
"""
|
| 80 |
try:
|
| 81 |
body = await request.json()
|
|
@@ -85,41 +91,70 @@ async def generate_content(request: Request):
|
|
| 85 |
if not task or not data:
|
| 86 |
raise HTTPException(status_code=400, detail="Missing 'task' or 'data' in request body")
|
| 87 |
|
| 88 |
-
|
| 89 |
-
meta_system_prompt = "You are an expert prompt engineer. Your task is to create a detailed and effective 'user' prompt for another AI model, which is an expert career consultant. The generated prompt must guide the second AI to produce a comprehensive, high-quality response in the required format based on the user's raw data and task."
|
| 90 |
-
|
| 91 |
-
meta_user_prompt = f"""
|
| 92 |
-
I have the following task and user data. Create the perfect prompt for a career consultant AI to handle this.
|
| 93 |
-
|
| 94 |
-
**Task:** '{task}'
|
| 95 |
-
|
| 96 |
-
**User's Raw Data:**
|
| 97 |
-
```json
|
| 98 |
-
{data}
|
| 99 |
-
```
|
| 100 |
-
|
| 101 |
-
**Instructions for the prompt you will generate:**
|
| 102 |
-
- The prompt must be self-contained and include all necessary user data.
|
| 103 |
-
- It must clearly state the desired output format.
|
| 104 |
-
- For the 'resume' task, the format MUST be a single JSON object with two keys: "resume" and "analysis", both containing well-formed HTML.
|
| 105 |
-
- For all other tasks ('interview', 'learning_path', 'cover_letter', 'linkedin', 'salary'), the format MUST be well-formed HTML content directly.
|
| 106 |
-
- The tone of the prompt should be as if a user is asking an expert for help.
|
| 107 |
-
- Incorporate all the details from the user's data into the prompt naturally.
|
| 108 |
-
"""
|
| 109 |
-
|
| 110 |
-
print(f"[INFO] Generating prompt for task: {task}")
|
| 111 |
-
generated_prompt = await call_deepseek_api(
|
| 112 |
-
messages=[
|
| 113 |
-
{"role": "system", "content": meta_system_prompt},
|
| 114 |
-
{"role": "user", "content": meta_user_prompt}
|
| 115 |
-
],
|
| 116 |
-
temperature=0.3 # Lower temperature for more deterministic prompt generation
|
| 117 |
-
)
|
| 118 |
-
print(f"[DEBUG] Generated Prompt for 2nd LLM call:\n{generated_prompt}")
|
| 119 |
|
| 120 |
-
# Step
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
final_system_prompts = {
|
| 122 |
-
"resume": "You are a professional career consultant and resume expert. Please strictly follow the JSON format
|
| 123 |
"interview": "You are an experienced interviewer and career mentor. Provide practical, professional interview preparation materials in well-formed HTML.",
|
| 124 |
"learning_path": "You are an experienced career mentor and learning planner. Create a personalized, actionable learning path in well-formed HTML.",
|
| 125 |
"cover_letter": "You are an expert cover letter writer. Write a professional, persuasive, and personalized cover letter in well-formed HTML.",
|
|
@@ -128,12 +163,106 @@ async def generate_content(request: Request):
|
|
| 128 |
}
|
| 129 |
final_system_prompt = final_system_prompts.get(task, "You are a helpful AI career assistant.")
|
| 130 |
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
final_content = await call_deepseek_api(
|
| 133 |
messages=[
|
| 134 |
{"role": "system", "content": final_system_prompt},
|
| 135 |
-
{"role": "user", "content":
|
| 136 |
-
]
|
|
|
|
| 137 |
)
|
| 138 |
|
| 139 |
return JSONResponse(content={"content": final_content})
|
|
@@ -152,9 +281,8 @@ async def generate_content(request: Request):
|
|
| 152 |
@app.post("/call-deepseek")
|
| 153 |
async def proxy_deepseek(request: Request):
|
| 154 |
"""
|
| 155 |
-
This endpoint
|
| 156 |
-
|
| 157 |
-
This is the original proxy endpoint and will be replaced by the /generate endpoint logic.
|
| 158 |
"""
|
| 159 |
if not DEEPSEEK_API_KEY:
|
| 160 |
print("[ERROR] DEEPSEEK_API_KEY is not set!")
|
|
@@ -211,4 +339,4 @@ async def read_root():
|
|
| 211 |
return HTMLResponse(
|
| 212 |
content="<h1>Error: index.html not found</h1><p>Ensure index.html is in a 'static' folder.",
|
| 213 |
status_code=404
|
| 214 |
-
)
|
|
|
|
| 1 |
import os
|
| 2 |
import httpx
|
| 3 |
+
import json # <-- 新增导入
|
| 4 |
from fastapi import FastAPI, Request, HTTPException
|
| 5 |
from fastapi.responses import HTMLResponse, JSONResponse
|
| 6 |
from fastapi.staticfiles import StaticFiles
|
|
|
|
| 70 |
detail=error_msg
|
| 71 |
)
|
| 72 |
|
| 73 |
+
# --- NEW: AI Agent Endpoint (Extractor + Expert Model) ---
|
| 74 |
@app.post("/generate")
|
| 75 |
async def generate_content(request: Request):
|
| 76 |
"""
|
| 77 |
+
This endpoint uses a robust "Extractor + Template + Expert" pattern.
|
| 78 |
+
|
| 79 |
+
1. (Optional) LLM 1 (Extractor): For tasks with messy user input (like 'resume'),
|
| 80 |
+
this step cleans and structures the data into a reliable JSON.
|
| 81 |
+
2. (Required) Human Template: We use a precise, human-written f-string template
|
| 82 |
+
to build the perfect prompt for the expert.
|
| 83 |
+
3. (Required) LLM 2 (Expert): This model receives the clean prompt and generates
|
| 84 |
+
the final, high-quality content.
|
| 85 |
"""
|
| 86 |
try:
|
| 87 |
body = await request.json()
|
|
|
|
| 91 |
if not task or not data:
|
| 92 |
raise HTTPException(status_code=400, detail="Missing 'task' or 'data' in request body")
|
| 93 |
|
| 94 |
+
structured_data = data # Default to original data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
+
# --- Step 1: (Optional) LLM 1 (Extractor) ---
|
| 97 |
+
# We only run this for tasks where user input might be "messy"
|
| 98 |
+
if task == "resume":
|
| 99 |
+
print(f"[INFO] Task '{task}' requires data extraction. Running LLM 1 (Extractor)...")
|
| 100 |
+
|
| 101 |
+
extractor_system_prompt = """
|
| 102 |
+
You are an expert data analyst. Your job is to extract and structure key information
|
| 103 |
+
from a user's raw data for a resume. Pay close attention to the 'skills' field,
|
| 104 |
+
which might be a messy, comma-separated list or natural language.
|
| 105 |
+
Your output MUST be a valid JSON object.
|
| 106 |
+
|
| 107 |
+
Keep all fields from the original data, but add a new key 'skills_list'
|
| 108 |
+
containing a clean Python-style list of skills extracted from the 'skills' field.
|
| 109 |
+
|
| 110 |
+
Example Input Data:
|
| 111 |
+
{ "name": "Alex", "skills": "i use react, js, and a bit of python. also project management", ... }
|
| 112 |
+
|
| 113 |
+
Example Output JSON:
|
| 114 |
+
{ "name": "Alex", "skills": "i use react, js, and a bit of python. also project management", "skills_list": ["React", "JavaScript", "Python (Beginner)", "Project Management"], ... }
|
| 115 |
+
"""
|
| 116 |
+
|
| 117 |
+
extractor_user_prompt = f"""
|
| 118 |
+
Please process the following raw user data and return ONLY a valid JSON object.
|
| 119 |
+
|
| 120 |
+
Raw Data:
|
| 121 |
+
```json
|
| 122 |
+
{json.dumps(data)}
|
| 123 |
+
```
|
| 124 |
+
"""
|
| 125 |
+
|
| 126 |
+
try:
|
| 127 |
+
# --- LLM 1 Call ---
|
| 128 |
+
json_string_output = await call_deepseek_api(
|
| 129 |
+
messages=[
|
| 130 |
+
{"role": "system", "content": extractor_system_prompt},
|
| 131 |
+
{"role": "user", "content": extractor_user_prompt}
|
| 132 |
+
],
|
| 133 |
+
model="deepseek-chat", # Use a fast model
|
| 134 |
+
temperature=0.1 # Low temp for high accuracy
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
# Clean up potential markdown ```json ... ```
|
| 138 |
+
if "```json" in json_string_output:
|
| 139 |
+
json_string_output = json_string_output.split("```json\n", 1)[1].split("```")[0]
|
| 140 |
+
|
| 141 |
+
structured_data = json.loads(json_string_output)
|
| 142 |
+
print(f"[DEBUG] LLM 1 (Extractor) output: {structured_data}")
|
| 143 |
+
|
| 144 |
+
except Exception as e:
|
| 145 |
+
print(f"[ERROR] LLM 1 (Extractor) failed: {e}. Falling back to raw data.")
|
| 146 |
+
# Fallback: If extraction fails, use the original data and do a simple split
|
| 147 |
+
structured_data = data
|
| 148 |
+
structured_data['skills_list'] = [skill.strip() for skill in data.get('skills', '').split(',')]
|
| 149 |
+
|
| 150 |
+
else:
|
| 151 |
+
print(f"[INFO] Task '{task}' does not require extraction. Using raw data.")
|
| 152 |
+
structured_data = data
|
| 153 |
+
|
| 154 |
+
# --- Step 2: Human-Written Templates ---
|
| 155 |
+
|
| 156 |
final_system_prompts = {
|
| 157 |
+
"resume": "You are a professional career consultant and resume expert. Your task is to generate a JSON object with two keys: 'resume' (HTML content) and 'analysis' (HTML content). Please strictly follow the JSON format, ensuring all HTML is well-formed and professional.",
|
| 158 |
"interview": "You are an experienced interviewer and career mentor. Provide practical, professional interview preparation materials in well-formed HTML.",
|
| 159 |
"learning_path": "You are an experienced career mentor and learning planner. Create a personalized, actionable learning path in well-formed HTML.",
|
| 160 |
"cover_letter": "You are an expert cover letter writer. Write a professional, persuasive, and personalized cover letter in well-formed HTML.",
|
|
|
|
| 163 |
}
|
| 164 |
final_system_prompt = final_system_prompts.get(task, "You are a helpful AI career assistant.")
|
| 165 |
|
| 166 |
+
# --- Build Final User Prompt from Template ---
|
| 167 |
+
final_user_prompt = ""
|
| 168 |
+
|
| 169 |
+
if task == "resume":
|
| 170 |
+
final_user_prompt = f"""
|
| 171 |
+
Please act as a resume expert. Create an optimized resume and a matching analysis based on the following structured data.
|
| 172 |
+
|
| 173 |
+
**User Profile:**
|
| 174 |
+
- Name: {structured_data.get('name', 'N/A')}
|
| 175 |
+
- Current Role: {structured_data.get('currentRole', 'N/A')}
|
| 176 |
+
- Years of Experience: {structured_data.get('experience', 'N/A')}
|
| 177 |
+
- Cleaned Skills List: {structured_data.get('skills_list', 'N/A')}
|
| 178 |
+
|
| 179 |
+
**Target Opportunity:**
|
| 180 |
+
- Job Title: {structured_data.get('jobTitle', 'N/A')}
|
| 181 |
+
- Company: {structured_data.get('company', 'N/A')}
|
| 182 |
+
- Job Description:
|
| 183 |
+
```
|
| 184 |
+
{structured_data.get('jobDescription', 'N/A')}
|
| 185 |
+
```
|
| 186 |
+
|
| 187 |
+
**Required Output Format:**
|
| 188 |
+
You MUST return a single, valid JSON object with two keys: "resume" and "analysis".
|
| 189 |
+
Both keys must contain well-formed HTML content.
|
| 190 |
+
"""
|
| 191 |
+
|
| 192 |
+
elif task == "interview":
|
| 193 |
+
final_user_prompt = f"""
|
| 194 |
+
Please act as an interview coach. Generate interview questions based on this data.
|
| 195 |
+
|
| 196 |
+
- Role: {structured_data.get('role', 'N/A')}
|
| 197 |
+
- Level: {structured_data.get('level', 'N/A')}
|
| 198 |
+
- Key Skills: {structured_data.get('skills', 'N/A')}
|
| 199 |
+
|
| 200 |
+
**Required Output Format:**
|
| 201 |
+
A single block of well-formed HTML content.
|
| 202 |
+
"""
|
| 203 |
+
|
| 204 |
+
elif task == "learning_path":
|
| 205 |
+
final_user_prompt = f"""
|
| 206 |
+
Please act as a learning planner. Create a personalized learning path.
|
| 207 |
+
|
| 208 |
+
- Current Skills: {structured_data.get('currentSkills', 'N/A')}
|
| 209 |
+
- Target Role: {structured_data.get('targetRole', 'N/A')}
|
| 210 |
+
- Timeline: {structured_data.get('timeline', 'N/A')} months
|
| 211 |
+
|
| 212 |
+
**Required Output Format:**
|
| 213 |
+
A single block of well-formed HTML content, detailing a roadmap.
|
| 214 |
+
"""
|
| 215 |
+
|
| 216 |
+
elif task == "cover_letter":
|
| 217 |
+
final_user_prompt = f"""
|
| 218 |
+
Please act as a cover letter writer. Write a letter based on these details.
|
| 219 |
+
|
| 220 |
+
- Company: {structured_data.get('company', 'N/A')}
|
| 221 |
+
- Role: {structured_data.get('role', 'N/A')}
|
| 222 |
+
- Key Achievement: {structured_data.get('achievement', 'N/A')}
|
| 223 |
+
- Tone: {structured_data.get('tone', 'N/A')}
|
| 224 |
+
|
| 225 |
+
**Required Output Format:**
|
| 226 |
+
A single block of well-formed HTML content, formatted as a letter.
|
| 227 |
+
"""
|
| 228 |
+
|
| 229 |
+
elif task == "linkedin":
|
| 230 |
+
final_user_prompt = f"""
|
| 231 |
+
Please act as a LinkedIn expert. Optimize a profile based on this data.
|
| 232 |
+
|
| 233 |
+
- Current Headline: {structured_data.get('headline', 'N/A')}
|
| 234 |
+
- Current About: {structured_data.get('about', 'N/A')}
|
| 235 |
+
- Target Industry/Roles: {structured_data.get('target', 'N/A')}
|
| 236 |
+
|
| 237 |
+
**Required Output Format:**
|
| 238 |
+
A single block of well-formed HTML content with sections for "New Headline" and "New About Section".
|
| 239 |
+
"""
|
| 240 |
+
|
| 241 |
+
elif task == "salary":
|
| 242 |
+
final_user_prompt = f"""
|
| 243 |
+
Please act as a salary analyst. Provide insights for the following role.
|
| 244 |
+
|
| 245 |
+
- Role: {structured_data.get('role', 'N/A')}
|
| 246 |
+
- Location: {structured_data.get('location', 'N/A')}
|
| 247 |
+
- Experience: {structured_data.get('experience', 'N/A')} years
|
| 248 |
+
- Company Size: {structured_data.get('companySize', 'N/A')}
|
| 249 |
+
|
| 250 |
+
**Required Output Format:**
|
| 251 |
+
A single block of well-formed HTML content, including an estimated range and negotiation tips.
|
| 252 |
+
"""
|
| 253 |
+
else:
|
| 254 |
+
final_user_prompt = f"Please perform the task '{task}' with the data: {json.dumps(structured_data)}"
|
| 255 |
+
|
| 256 |
+
print(f"[DEBUG] Final User Prompt for LLM 2:\n{final_user_prompt[:500]}...") # Log first 500 chars
|
| 257 |
+
|
| 258 |
+
# --- Step 3: LLM 2 (Expert) Call ---
|
| 259 |
+
print(f"[INFO] Generating final content for task: {task} using LLM 2 (Expert)...")
|
| 260 |
final_content = await call_deepseek_api(
|
| 261 |
messages=[
|
| 262 |
{"role": "system", "content": final_system_prompt},
|
| 263 |
+
{"role": "user", "content": final_user_prompt}
|
| 264 |
+
],
|
| 265 |
+
temperature=0.7 # Standard temp for creative/expert output
|
| 266 |
)
|
| 267 |
|
| 268 |
return JSONResponse(content={"content": final_content})
|
|
|
|
| 281 |
@app.post("/call-deepseek")
|
| 282 |
async def proxy_deepseek(request: Request):
|
| 283 |
"""
|
| 284 |
+
This endpoint is kept for legacy purposes but is not used by the
|
| 285 |
+
new /generate logic.
|
|
|
|
| 286 |
"""
|
| 287 |
if not DEEPSEEK_API_KEY:
|
| 288 |
print("[ERROR] DEEPSEEK_API_KEY is not set!")
|
|
|
|
| 339 |
return HTMLResponse(
|
| 340 |
content="<h1>Error: index.html not found</h1><p>Ensure index.html is in a 'static' folder.",
|
| 341 |
status_code=404
|
| 342 |
+
)
|