Spaces:
Runtime error
Runtime error
minor
Browse files- app.py +186 -4
- requirements.txt +4 -3
- t2v_enhanced/gradio_demo.py +0 -189
- t2v_enhanced/inference.py +3 -3
- t2v_enhanced/model/video_ldm.py +1 -1
- t2v_enhanced/model_func.py +1 -1
- t2v_enhanced/model_init.py +4 -4
app.py
CHANGED
|
@@ -1,7 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# General
|
| 2 |
+
import os
|
| 3 |
+
from os.path import join as opj
|
| 4 |
+
import argparse
|
| 5 |
+
import datetime
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
import torch
|
| 8 |
import gradio as gr
|
| 9 |
+
import tempfile
|
| 10 |
+
import yaml
|
| 11 |
+
from t2v_enhanced.model.video_ldm import VideoLDM
|
| 12 |
|
| 13 |
+
# Utilities
|
| 14 |
+
from t2v_enhanced.inference_utils import *
|
| 15 |
+
from t2v_enhanced.model_init import *
|
| 16 |
+
from t2v_enhanced.model_func import *
|
| 17 |
|
| 18 |
+
|
| 19 |
+
on_huggingspace = os.environ.get("SPACE_AUTHOR_NAME") == "PAIR"
|
| 20 |
+
parser = argparse.ArgumentParser()
|
| 21 |
+
parser.add_argument('--public_access', action='store_true', default=True)
|
| 22 |
+
parser.add_argument('--where_to_log', type=str, default="gradio_output")
|
| 23 |
+
parser.add_argument('--device', type=str, default="cuda")
|
| 24 |
+
args = parser.parse_args()
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
Path(args.where_to_log).mkdir(parents=True, exist_ok=True)
|
| 28 |
+
result_fol = Path(args.where_to_log).absolute()
|
| 29 |
+
device = args.device
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# --------------------------
|
| 33 |
+
# ----- Configurations -----
|
| 34 |
+
# --------------------------
|
| 35 |
+
ckpt_file_streaming_t2v = Path("t2v_enhanced/checkpoints/streaming_t2v.ckpt").absolute()
|
| 36 |
+
cfg_v2v = {'downscale': 1, 'upscale_size': (1280, 720), 'model_id': 'damo/Video-to-Video', 'pad': True}
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
# --------------------------
|
| 40 |
+
# ----- Initialization -----
|
| 41 |
+
# --------------------------
|
| 42 |
+
ms_model = init_modelscope(device)
|
| 43 |
+
# zs_model = init_zeroscope(device)
|
| 44 |
+
stream_cli, stream_model = init_streamingt2v_model(ckpt_file_streaming_t2v, result_fol)
|
| 45 |
+
msxl_model = init_v2v_model(cfg_v2v)
|
| 46 |
+
|
| 47 |
+
inference_generator = torch.Generator(device="cuda")
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
# -------------------------
|
| 51 |
+
# ----- Functionality -----
|
| 52 |
+
# -------------------------
|
| 53 |
+
def generate(prompt, num_frames, image, model_name_stage1, model_name_stage2, n_prompt, seed, t, image_guidance, where_to_log=result_fol):
|
| 54 |
+
now = datetime.datetime.now()
|
| 55 |
+
name = prompt[:100].replace(" ", "_") + "_" + str(now.time()).replace(":", "_").replace(".", "_")
|
| 56 |
+
|
| 57 |
+
if num_frames == [] or num_frames is None:
|
| 58 |
+
num_frames = 56
|
| 59 |
+
else:
|
| 60 |
+
num_frames = int(num_frames.split(" ")[0])
|
| 61 |
+
|
| 62 |
+
n_autoreg_gen = num_frames/8-8
|
| 63 |
+
|
| 64 |
+
inference_generator.manual_seed(seed)
|
| 65 |
+
short_video = ms_short_gen(prompt, ms_model, inference_generator, t, device)
|
| 66 |
+
stream_long_gen(prompt, short_video, n_autoreg_gen, n_prompt, seed, t, image_guidance, name, stream_cli, stream_model)
|
| 67 |
+
video_path = opj(where_to_log, name+".mp4")
|
| 68 |
+
return video_path
|
| 69 |
+
|
| 70 |
+
def enhance(prompt, input_to_enhance):
|
| 71 |
+
encoded_video = video2video(prompt, input_to_enhance, result_fol, cfg_v2v, msxl_model)
|
| 72 |
+
return encoded_video
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# --------------------------
|
| 76 |
+
# ----- Gradio-Demo UI -----
|
| 77 |
+
# --------------------------
|
| 78 |
+
with gr.Blocks() as demo:
|
| 79 |
+
gr.HTML(
|
| 80 |
+
"""
|
| 81 |
+
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
|
| 82 |
+
<h1 style="font-weight: 900; font-size: 3rem; margin: 0rem">
|
| 83 |
+
<a href="https://github.com/Picsart-AI-Research/StreamingT2V" style="color:blue;">StreamingT2V</a>
|
| 84 |
+
</h1>
|
| 85 |
+
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
| 86 |
+
Roberto Henschel<sup>1*</sup>, Levon Khachatryan<sup>1*</sup>, Daniil Hayrapetyan<sup>1*</sup>, Hayk Poghosyan<sup>1</sup>, Vahram Tadevosyan<sup>1</sup>, Zhangyang Wang<sup>1,2</sup>, Shant Navasardyan<sup>1</sup>, Humphrey Shi<sup>1,3</sup>
|
| 87 |
+
</h2>
|
| 88 |
+
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
| 89 |
+
<sup>1</sup>Picsart AI Resarch (PAIR), <sup>2</sup>UT Austin, <sup>3</sup>SHI Labs @ Georgia Tech, Oregon & UIUC
|
| 90 |
+
</h2>
|
| 91 |
+
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
| 92 |
+
*Equal Contribution
|
| 93 |
+
</h2>
|
| 94 |
+
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
| 95 |
+
[<a href="https://arxiv.org/abs/2403.14773" style="color:blue;">arXiv</a>]
|
| 96 |
+
[<a href="https://github.com/Picsart-AI-Research/StreamingT2V" style="color:blue;">GitHub</a>]
|
| 97 |
+
</h2>
|
| 98 |
+
<h2 style="font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
|
| 99 |
+
<b>StreamingT2V</b> is an advanced autoregressive technique that enables the creation of long videos featuring rich motion dynamics without any stagnation.
|
| 100 |
+
It ensures temporal consistency throughout the video, aligns closely with the descriptive text, and maintains high frame-level image quality.
|
| 101 |
+
Our demonstrations include successful examples of videos up to <b>1200 frames, spanning 2 minutes</b>, and can be extended for even longer durations.
|
| 102 |
+
Importantly, the effectiveness of StreamingT2V is not limited by the specific Text2Video model used, indicating that improvements in base models could yield even higher-quality videos.
|
| 103 |
+
</h2>
|
| 104 |
+
</div>
|
| 105 |
+
""")
|
| 106 |
+
|
| 107 |
+
if on_huggingspace:
|
| 108 |
+
gr.HTML("""
|
| 109 |
+
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
|
| 110 |
+
<br/>
|
| 111 |
+
<a href="https://huggingface.co/spaces/PAIR/StreamingT2V?duplicate=true">
|
| 112 |
+
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
| 113 |
+
</p>""")
|
| 114 |
+
|
| 115 |
+
with gr.Row():
|
| 116 |
+
with gr.Column():
|
| 117 |
+
with gr.Row():
|
| 118 |
+
with gr.Column():
|
| 119 |
+
with gr.Row():
|
| 120 |
+
num_frames = gr.Dropdown(["24", "32", "40", "48", "56", "80 - only on local", "240 - only on local", "600 - only on local", "1200 - only on local", "10000 - only on local"], label="Number of Video Frames: Default is 56", info="For >80 frames use local workstation!")
|
| 121 |
+
with gr.Row():
|
| 122 |
+
prompt_stage1 = gr.Textbox(label='Textual Prompt', placeholder="Ex: Dog running on the street.")
|
| 123 |
+
with gr.Row():
|
| 124 |
+
image_stage1 = gr.Image(label='Image Prompt (only required for I2V base models)', show_label=True, scale=1, show_download_button=True)
|
| 125 |
+
with gr.Column():
|
| 126 |
+
video_stage1 = gr.Video(label='Long Video Preview', show_label=True, interactive=False, scale=2, show_download_button=True)
|
| 127 |
+
with gr.Row():
|
| 128 |
+
run_button_stage1 = gr.Button("Long Video Preview Generation")
|
| 129 |
+
|
| 130 |
+
with gr.Row():
|
| 131 |
+
with gr.Column():
|
| 132 |
+
with gr.Accordion('Advanced options', open=False):
|
| 133 |
+
model_name_stage1 = gr.Dropdown(
|
| 134 |
+
choices=["T2V: ModelScope", "T2V: ZeroScope", "I2V: AnimateDiff"],
|
| 135 |
+
label="Base Model. Default is ModelScope",
|
| 136 |
+
info="Currently supports only ModelScope. We will add more options later!",
|
| 137 |
+
)
|
| 138 |
+
model_name_stage2 = gr.Dropdown(
|
| 139 |
+
choices=["ModelScope-XL", "Another", "Another"],
|
| 140 |
+
label="Enhancement Model. Default is ModelScope-XL",
|
| 141 |
+
info="Currently supports only ModelScope-XL. We will add more options later!",
|
| 142 |
+
)
|
| 143 |
+
n_prompt = gr.Textbox(label="Optional Negative Prompt", value='')
|
| 144 |
+
seed = gr.Slider(label='Seed', minimum=0, maximum=65536, value=33,step=1,)
|
| 145 |
+
|
| 146 |
+
t = gr.Slider(label="Timesteps", minimum=0, maximum=100, value=50, step=1,)
|
| 147 |
+
image_guidance = gr.Slider(label='Image guidance scale', minimum=1, maximum=10, value=9.0, step=1.0)
|
| 148 |
+
|
| 149 |
+
with gr.Column():
|
| 150 |
+
with gr.Row():
|
| 151 |
+
video_stage2 = gr.Video(label='Enhanced Long Video', show_label=True, interactive=False, height=473, show_download_button=True)
|
| 152 |
+
with gr.Row():
|
| 153 |
+
run_button_stage2 = gr.Button("Long Video Enhancement")
|
| 154 |
+
'''
|
| 155 |
+
'''
|
| 156 |
+
gr.HTML(
|
| 157 |
+
"""
|
| 158 |
+
<div style="text-align: justify; max-width: 1200px; margin: 20px auto;">
|
| 159 |
+
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
|
| 160 |
+
<b>Version: v1.0</b>
|
| 161 |
+
</h3>
|
| 162 |
+
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
|
| 163 |
+
<b>Caution</b>:
|
| 164 |
+
We would like the raise the awareness of users of this demo of its potential issues and concerns.
|
| 165 |
+
Like previous large foundation models, StreamingT2V could be problematic in some cases, partially we use pretrained ModelScope, therefore StreamingT2V can Inherit Its Imperfections.
|
| 166 |
+
So far, we keep all features available for research testing both to show the great potential of the StreamingT2V framework and to collect important feedback to improve the model in the future.
|
| 167 |
+
We welcome researchers and users to report issues with the HuggingFace community discussion feature or email the authors.
|
| 168 |
+
</h3>
|
| 169 |
+
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
|
| 170 |
+
<b>Biases and content acknowledgement</b>:
|
| 171 |
+
Beware that StreamingT2V may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography, and violence.
|
| 172 |
+
StreamingT2V in this demo is meant only for research purposes.
|
| 173 |
+
</h3>
|
| 174 |
+
</div>
|
| 175 |
+
""")
|
| 176 |
+
|
| 177 |
+
inputs_t2v = [prompt_stage1, num_frames, image_stage1, model_name_stage1, model_name_stage2, n_prompt, seed, t, image_guidance]
|
| 178 |
+
run_button_stage1.click(fn=generate, inputs=inputs_t2v, outputs=video_stage1,)
|
| 179 |
+
|
| 180 |
+
inputs_v2v = [prompt_stage1, video_stage1]
|
| 181 |
+
run_button_stage2.click(fn=enhance, inputs=inputs_v2v, outputs=video_stage2,)
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
if on_huggingspace:
|
| 185 |
+
demo.queue(max_size=20)
|
| 186 |
+
demo.launch(debug=True)
|
| 187 |
+
else:
|
| 188 |
+
_, _, link = demo.queue(api_open=False).launch(share=args.public_access)
|
| 189 |
+
print(link)
|
requirements.txt
CHANGED
|
@@ -22,16 +22,17 @@ scikit-image==0.20.0
|
|
| 22 |
scikit-learn==1.2.2
|
| 23 |
scipy==1.9.1
|
| 24 |
seaborn==0.12.2
|
| 25 |
-
-e .
|
| 26 |
torch==2.0.0
|
| 27 |
torchdata==0.6.0
|
| 28 |
torchvision==0.15.1
|
|
|
|
| 29 |
tqdm==4.65.0
|
| 30 |
xformers==0.0.19
|
| 31 |
open-clip-torch==2.24.0
|
| 32 |
-
jsonargparse==4.
|
| 33 |
fairscale==0.4.13
|
| 34 |
rotary-embedding-torch==0.5.3
|
| 35 |
easydict==1.13
|
| 36 |
torchsde==0.2.6
|
| 37 |
-
imageio[ffmpeg]==2.25.0
|
|
|
|
|
|
| 22 |
scikit-learn==1.2.2
|
| 23 |
scipy==1.9.1
|
| 24 |
seaborn==0.12.2
|
|
|
|
| 25 |
torch==2.0.0
|
| 26 |
torchdata==0.6.0
|
| 27 |
torchvision==0.15.1
|
| 28 |
+
modelscope==1.13.3
|
| 29 |
tqdm==4.65.0
|
| 30 |
xformers==0.0.19
|
| 31 |
open-clip-torch==2.24.0
|
| 32 |
+
jsonargparse[signatures]==4.27.7
|
| 33 |
fairscale==0.4.13
|
| 34 |
rotary-embedding-torch==0.5.3
|
| 35 |
easydict==1.13
|
| 36 |
torchsde==0.2.6
|
| 37 |
+
imageio[ffmpeg]==2.25.0
|
| 38 |
+
kornia==0.7.2
|
t2v_enhanced/gradio_demo.py
DELETED
|
@@ -1,189 +0,0 @@
|
|
| 1 |
-
# General
|
| 2 |
-
import os
|
| 3 |
-
from os.path import join as opj
|
| 4 |
-
import argparse
|
| 5 |
-
import datetime
|
| 6 |
-
from pathlib import Path
|
| 7 |
-
import torch
|
| 8 |
-
import gradio as gr
|
| 9 |
-
import tempfile
|
| 10 |
-
import yaml
|
| 11 |
-
from t2v_enhanced.model.video_ldm import VideoLDM
|
| 12 |
-
|
| 13 |
-
# Utilities
|
| 14 |
-
from inference_utils import *
|
| 15 |
-
from model_init import *
|
| 16 |
-
from model_func import *
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
on_huggingspace = os.environ.get("SPACE_AUTHOR_NAME") == "PAIR"
|
| 20 |
-
parser = argparse.ArgumentParser()
|
| 21 |
-
parser.add_argument('--public_access', action='store_true', default=True)
|
| 22 |
-
parser.add_argument('--where_to_log', type=str, default="gradio_output")
|
| 23 |
-
parser.add_argument('--device', type=str, default="cuda")
|
| 24 |
-
args = parser.parse_args()
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
Path(args.where_to_log).mkdir(parents=True, exist_ok=True)
|
| 28 |
-
result_fol = Path(args.where_to_log).absolute()
|
| 29 |
-
device = args.device
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
# --------------------------
|
| 33 |
-
# ----- Configurations -----
|
| 34 |
-
# --------------------------
|
| 35 |
-
ckpt_file_streaming_t2v = Path("checkpoints/streaming_t2v.ckpt").absolute()
|
| 36 |
-
cfg_v2v = {'downscale': 1, 'upscale_size': (1280, 720), 'model_id': 'damo/Video-to-Video', 'pad': True}
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
# --------------------------
|
| 40 |
-
# ----- Initialization -----
|
| 41 |
-
# --------------------------
|
| 42 |
-
ms_model = init_modelscope(device)
|
| 43 |
-
# zs_model = init_zeroscope(device)
|
| 44 |
-
stream_cli, stream_model = init_streamingt2v_model(ckpt_file_streaming_t2v, result_fol)
|
| 45 |
-
msxl_model = init_v2v_model(cfg_v2v)
|
| 46 |
-
|
| 47 |
-
inference_generator = torch.Generator(device="cuda")
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
# -------------------------
|
| 51 |
-
# ----- Functionality -----
|
| 52 |
-
# -------------------------
|
| 53 |
-
def generate(prompt, num_frames, image, model_name_stage1, model_name_stage2, n_prompt, seed, t, image_guidance, where_to_log=result_fol):
|
| 54 |
-
now = datetime.datetime.now()
|
| 55 |
-
name = prompt[:100].replace(" ", "_") + "_" + str(now.time()).replace(":", "_").replace(".", "_")
|
| 56 |
-
|
| 57 |
-
if num_frames == [] or num_frames is None:
|
| 58 |
-
num_frames = 56
|
| 59 |
-
else:
|
| 60 |
-
num_frames = int(num_frames.split(" ")[0])
|
| 61 |
-
|
| 62 |
-
n_autoreg_gen = num_frames/8-8
|
| 63 |
-
|
| 64 |
-
inference_generator.manual_seed(seed)
|
| 65 |
-
short_video = ms_short_gen(prompt, ms_model, inference_generator, t, device)
|
| 66 |
-
stream_long_gen(prompt, short_video, n_autoreg_gen, n_prompt, seed, t, image_guidance, name, stream_cli, stream_model)
|
| 67 |
-
video_path = opj(where_to_log, name+".mp4")
|
| 68 |
-
return video_path
|
| 69 |
-
|
| 70 |
-
def enhance(prompt, input_to_enhance):
|
| 71 |
-
encoded_video = video2video(prompt, input_to_enhance, result_fol, cfg_v2v, msxl_model)
|
| 72 |
-
return encoded_video
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
# --------------------------
|
| 76 |
-
# ----- Gradio-Demo UI -----
|
| 77 |
-
# --------------------------
|
| 78 |
-
with gr.Blocks() as demo:
|
| 79 |
-
gr.HTML(
|
| 80 |
-
"""
|
| 81 |
-
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
|
| 82 |
-
<h1 style="font-weight: 900; font-size: 3rem; margin: 0rem">
|
| 83 |
-
<a href="https://github.com/Picsart-AI-Research/StreamingT2V" style="color:blue;">StreamingT2V</a>
|
| 84 |
-
</h1>
|
| 85 |
-
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
| 86 |
-
Roberto Henschel<sup>1*</sup>, Levon Khachatryan<sup>1*</sup>, Daniil Hayrapetyan<sup>1*</sup>, Hayk Poghosyan<sup>1</sup>, Vahram Tadevosyan<sup>1</sup>, Zhangyang Wang<sup>1,2</sup>, Shant Navasardyan<sup>1</sup>, Humphrey Shi<sup>1,3</sup>
|
| 87 |
-
</h2>
|
| 88 |
-
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
| 89 |
-
<sup>1</sup>Picsart AI Resarch (PAIR), <sup>2</sup>UT Austin, <sup>3</sup>SHI Labs @ Georgia Tech, Oregon & UIUC
|
| 90 |
-
</h2>
|
| 91 |
-
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
| 92 |
-
*Equal Contribution
|
| 93 |
-
</h2>
|
| 94 |
-
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
| 95 |
-
[<a href="https://arxiv.org/abs/2403.14773" style="color:blue;">arXiv</a>]
|
| 96 |
-
[<a href="https://github.com/Picsart-AI-Research/StreamingT2V" style="color:blue;">GitHub</a>]
|
| 97 |
-
</h2>
|
| 98 |
-
<h2 style="font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
|
| 99 |
-
<b>StreamingT2V</b> is an advanced autoregressive technique that enables the creation of long videos featuring rich motion dynamics without any stagnation.
|
| 100 |
-
It ensures temporal consistency throughout the video, aligns closely with the descriptive text, and maintains high frame-level image quality.
|
| 101 |
-
Our demonstrations include successful examples of videos up to <b>1200 frames, spanning 2 minutes</b>, and can be extended for even longer durations.
|
| 102 |
-
Importantly, the effectiveness of StreamingT2V is not limited by the specific Text2Video model used, indicating that improvements in base models could yield even higher-quality videos.
|
| 103 |
-
</h2>
|
| 104 |
-
</div>
|
| 105 |
-
""")
|
| 106 |
-
|
| 107 |
-
if on_huggingspace:
|
| 108 |
-
gr.HTML("""
|
| 109 |
-
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
|
| 110 |
-
<br/>
|
| 111 |
-
<a href="https://huggingface.co/spaces/PAIR/StreamingT2V?duplicate=true">
|
| 112 |
-
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
| 113 |
-
</p>""")
|
| 114 |
-
|
| 115 |
-
with gr.Row():
|
| 116 |
-
with gr.Column():
|
| 117 |
-
with gr.Row():
|
| 118 |
-
with gr.Column():
|
| 119 |
-
with gr.Row():
|
| 120 |
-
num_frames = gr.Dropdown(["24", "32", "40", "48", "56", "80 - only on local", "240 - only on local", "600 - only on local", "1200 - only on local", "10000 - only on local"], label="Number of Video Frames: Default is 56", info="For >80 frames use local workstation!")
|
| 121 |
-
with gr.Row():
|
| 122 |
-
prompt_stage1 = gr.Textbox(label='Textual Prompt', placeholder="Ex: Dog running on the street.")
|
| 123 |
-
with gr.Row():
|
| 124 |
-
image_stage1 = gr.Image(label='Image Prompt (only required for I2V base models)', show_label=True, scale=1, show_download_button=True)
|
| 125 |
-
with gr.Column():
|
| 126 |
-
video_stage1 = gr.Video(label='Long Video Preview', show_label=True, interactive=False, scale=2, show_download_button=True)
|
| 127 |
-
with gr.Row():
|
| 128 |
-
run_button_stage1 = gr.Button("Long Video Preview Generation")
|
| 129 |
-
|
| 130 |
-
with gr.Row():
|
| 131 |
-
with gr.Column():
|
| 132 |
-
with gr.Accordion('Advanced options', open=False):
|
| 133 |
-
model_name_stage1 = gr.Dropdown(
|
| 134 |
-
choices=["T2V: ModelScope", "T2V: ZeroScope", "I2V: AnimateDiff"],
|
| 135 |
-
label="Base Model. Default is ModelScope",
|
| 136 |
-
info="Currently supports only ModelScope. We will add more options later!",
|
| 137 |
-
)
|
| 138 |
-
model_name_stage2 = gr.Dropdown(
|
| 139 |
-
choices=["ModelScope-XL", "Another", "Another"],
|
| 140 |
-
label="Enhancement Model. Default is ModelScope-XL",
|
| 141 |
-
info="Currently supports only ModelScope-XL. We will add more options later!",
|
| 142 |
-
)
|
| 143 |
-
n_prompt = gr.Textbox(label="Optional Negative Prompt", value='')
|
| 144 |
-
seed = gr.Slider(label='Seed', minimum=0, maximum=65536, value=33,step=1,)
|
| 145 |
-
|
| 146 |
-
t = gr.Slider(label="Timesteps", minimum=0, maximum=100, value=50, step=1,)
|
| 147 |
-
image_guidance = gr.Slider(label='Image guidance scale', minimum=1, maximum=10, value=9.0, step=1.0)
|
| 148 |
-
|
| 149 |
-
with gr.Column():
|
| 150 |
-
with gr.Row():
|
| 151 |
-
video_stage2 = gr.Video(label='Enhanced Long Video', show_label=True, interactive=False, height=473, show_download_button=True)
|
| 152 |
-
with gr.Row():
|
| 153 |
-
run_button_stage2 = gr.Button("Long Video Enhancement")
|
| 154 |
-
'''
|
| 155 |
-
'''
|
| 156 |
-
gr.HTML(
|
| 157 |
-
"""
|
| 158 |
-
<div style="text-align: justify; max-width: 1200px; margin: 20px auto;">
|
| 159 |
-
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
|
| 160 |
-
<b>Version: v1.0</b>
|
| 161 |
-
</h3>
|
| 162 |
-
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
|
| 163 |
-
<b>Caution</b>:
|
| 164 |
-
We would like the raise the awareness of users of this demo of its potential issues and concerns.
|
| 165 |
-
Like previous large foundation models, StreamingT2V could be problematic in some cases, partially we use pretrained ModelScope, therefore StreamingT2V can Inherit Its Imperfections.
|
| 166 |
-
So far, we keep all features available for research testing both to show the great potential of the StreamingT2V framework and to collect important feedback to improve the model in the future.
|
| 167 |
-
We welcome researchers and users to report issues with the HuggingFace community discussion feature or email the authors.
|
| 168 |
-
</h3>
|
| 169 |
-
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
|
| 170 |
-
<b>Biases and content acknowledgement</b>:
|
| 171 |
-
Beware that StreamingT2V may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography, and violence.
|
| 172 |
-
StreamingT2V in this demo is meant only for research purposes.
|
| 173 |
-
</h3>
|
| 174 |
-
</div>
|
| 175 |
-
""")
|
| 176 |
-
|
| 177 |
-
inputs_t2v = [prompt_stage1, num_frames, image_stage1, model_name_stage1, model_name_stage2, n_prompt, seed, t, image_guidance]
|
| 178 |
-
run_button_stage1.click(fn=generate, inputs=inputs_t2v, outputs=video_stage1,)
|
| 179 |
-
|
| 180 |
-
inputs_v2v = [prompt_stage1, video_stage1]
|
| 181 |
-
run_button_stage2.click(fn=enhance, inputs=inputs_v2v, outputs=video_stage2,)
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
if on_huggingspace:
|
| 185 |
-
demo.queue(max_size=20)
|
| 186 |
-
demo.launch(debug=True)
|
| 187 |
-
else:
|
| 188 |
-
_, _, link = demo.queue(api_open=False).launch(share=args.public_access)
|
| 189 |
-
print(link)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t2v_enhanced/inference.py
CHANGED
|
@@ -11,9 +11,9 @@ import yaml
|
|
| 11 |
from t2v_enhanced.model.video_ldm import VideoLDM
|
| 12 |
|
| 13 |
# Utilities
|
| 14 |
-
from inference_utils import *
|
| 15 |
-
from model_init import *
|
| 16 |
-
from model_func import *
|
| 17 |
|
| 18 |
|
| 19 |
if __name__ == "__main__":
|
|
|
|
| 11 |
from t2v_enhanced.model.video_ldm import VideoLDM
|
| 12 |
|
| 13 |
# Utilities
|
| 14 |
+
from t2v_enhanced.inference_utils import *
|
| 15 |
+
from t2v_enhanced.model_init import *
|
| 16 |
+
from t2v_enhanced.model_func import *
|
| 17 |
|
| 18 |
|
| 19 |
if __name__ == "__main__":
|
t2v_enhanced/model/video_ldm.py
CHANGED
|
@@ -8,7 +8,7 @@ from diffusers.utils.import_utils import is_xformers_available
|
|
| 8 |
from einops import rearrange, repeat
|
| 9 |
|
| 10 |
from transformers import CLIPTextModel, CLIPTokenizer
|
| 11 |
-
from utils.video_utils import ResultProcessor, save_videos_grid, video_naming
|
| 12 |
|
| 13 |
from t2v_enhanced.model import pl_module_params_controlnet
|
| 14 |
|
|
|
|
| 8 |
from einops import rearrange, repeat
|
| 9 |
|
| 10 |
from transformers import CLIPTextModel, CLIPTokenizer
|
| 11 |
+
from t2v_enhanced.utils.video_utils import ResultProcessor, save_videos_grid, video_naming
|
| 12 |
|
| 13 |
from t2v_enhanced.model import pl_module_params_controlnet
|
| 14 |
|
t2v_enhanced/model_func.py
CHANGED
|
@@ -6,7 +6,7 @@ import torch
|
|
| 6 |
from einops import rearrange, repeat
|
| 7 |
|
| 8 |
# Utilities
|
| 9 |
-
from inference_utils import *
|
| 10 |
|
| 11 |
from modelscope.outputs import OutputKeys
|
| 12 |
import imageio
|
|
|
|
| 6 |
from einops import rearrange, repeat
|
| 7 |
|
| 8 |
# Utilities
|
| 9 |
+
from t2v_enhanced.inference_utils import *
|
| 10 |
|
| 11 |
from modelscope.outputs import OutputKeys
|
| 12 |
import imageio
|
t2v_enhanced/model_init.py
CHANGED
|
@@ -13,8 +13,8 @@ from diffusers import StableVideoDiffusionPipeline, AutoPipelineForText2Image
|
|
| 13 |
import tempfile
|
| 14 |
import yaml
|
| 15 |
from t2v_enhanced.model.video_ldm import VideoLDM
|
| 16 |
-
from model.callbacks import SaveConfigCallback
|
| 17 |
-
from inference_utils import legacy_transformation, remove_value, CustomCLI
|
| 18 |
|
| 19 |
# For Stage-3
|
| 20 |
from modelscope.pipelines import pipeline
|
|
@@ -67,7 +67,7 @@ def init_svd(device="cuda"):
|
|
| 67 |
|
| 68 |
# Initialize StreamingT2V model.
|
| 69 |
def init_streamingt2v_model(ckpt_file, result_fol):
|
| 70 |
-
config_file = "configs/text_to_video/config.yaml"
|
| 71 |
sys.argv = sys.argv[:1]
|
| 72 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
| 73 |
storage_fol = Path(tmpdirname)
|
|
@@ -86,7 +86,7 @@ def init_streamingt2v_model(ckpt_file, result_fol):
|
|
| 86 |
sys.argv.append("--result_fol")
|
| 87 |
sys.argv.append(result_fol.as_posix())
|
| 88 |
sys.argv.append("--config")
|
| 89 |
-
sys.argv.append("configs/inference/inference_long_video.yaml")
|
| 90 |
sys.argv.append("--data.prompt_cfg.type=prompt")
|
| 91 |
sys.argv.append(f"--data.prompt_cfg.content='test prompt for initialization'")
|
| 92 |
sys.argv.append("--trainer.devices=1")
|
|
|
|
| 13 |
import tempfile
|
| 14 |
import yaml
|
| 15 |
from t2v_enhanced.model.video_ldm import VideoLDM
|
| 16 |
+
from t2v_enhanced.model.callbacks import SaveConfigCallback
|
| 17 |
+
from t2v_enhanced.inference_utils import legacy_transformation, remove_value, CustomCLI
|
| 18 |
|
| 19 |
# For Stage-3
|
| 20 |
from modelscope.pipelines import pipeline
|
|
|
|
| 67 |
|
| 68 |
# Initialize StreamingT2V model.
|
| 69 |
def init_streamingt2v_model(ckpt_file, result_fol):
|
| 70 |
+
config_file = "t2v_enhanced/configs/text_to_video/config.yaml"
|
| 71 |
sys.argv = sys.argv[:1]
|
| 72 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
| 73 |
storage_fol = Path(tmpdirname)
|
|
|
|
| 86 |
sys.argv.append("--result_fol")
|
| 87 |
sys.argv.append(result_fol.as_posix())
|
| 88 |
sys.argv.append("--config")
|
| 89 |
+
sys.argv.append("t2v_enhanced/configs/inference/inference_long_video.yaml")
|
| 90 |
sys.argv.append("--data.prompt_cfg.type=prompt")
|
| 91 |
sys.argv.append(f"--data.prompt_cfg.content='test prompt for initialization'")
|
| 92 |
sys.argv.append("--trainer.devices=1")
|