Spaces:
Running
Running
Create classifier.py
Browse files- classifier.py +217 -0
classifier.py
ADDED
|
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
classifier.py
|
| 3 |
+
Core pipeline: normalization, heuristics, multi-model inference, aggregation & explanations.
|
| 4 |
+
|
| 5 |
+
Designed to be defensive: flags suspicious content and explains why.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from typing import List, Dict, Any, Optional, Tuple
|
| 9 |
+
import re
|
| 10 |
+
import math
|
| 11 |
+
import logging
|
| 12 |
+
|
| 13 |
+
# Model imports
|
| 14 |
+
import torch
|
| 15 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 16 |
+
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
logging.basicConfig(level=logging.INFO)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
###########################
|
| 22 |
+
# Configuration / models
|
| 23 |
+
###########################
|
| 24 |
+
|
| 25 |
+
# Candidate model names (change to the exact models you prefer)
|
| 26 |
+
HARM_MODELS = [
|
| 27 |
+
"unitary/toxic-bert", # English toxic classifier
|
| 28 |
+
"unitary/multilingual-toxic-xlm-roberta" # multilingual toxic classifier
|
| 29 |
+
]
|
| 30 |
+
URL_MODEL = "r3ddkahili/final-complete-malicious-url-model" # malicious URL detector
|
| 31 |
+
|
| 32 |
+
# thresholds (tunable)
|
| 33 |
+
THRESHOLDS = {
|
| 34 |
+
"harm": 0.5, # generic threshold for harmful label(s) (individual mapping below)
|
| 35 |
+
"url": 0.7, # suspicious/malicious probability threshold
|
| 36 |
+
"ascii_entropy": 3.0 # lower entropy -> suspicious
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
# model handles (populated by load_models())
|
| 40 |
+
MODEL_HANDLES = {
|
| 41 |
+
"harm": [], # list of tuples (name, tokenizer, model, label_map)
|
| 42 |
+
"url": None # tuple (name, tokenizer, model, label_map)
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
###########################
|
| 47 |
+
# Utilities: normalization
|
| 48 |
+
###########################
|
| 49 |
+
|
| 50 |
+
# Minimal homoglyph map (extend this in production)
|
| 51 |
+
HOMOGLYPH_MAP = {
|
| 52 |
+
'\u0430': 'a', # cyrillic a -> a
|
| 53 |
+
'\u0435': 'e', # cyrillic e -> e
|
| 54 |
+
'\u03BF': 'o', # greek omicron -> o
|
| 55 |
+
'0': 'o',
|
| 56 |
+
'1': 'l',
|
| 57 |
+
'@': 'a',
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
ZERO_WIDTH_PATTERN = re.compile('[\u200B-\u200F\uFEFF]')
|
| 61 |
+
|
| 62 |
+
def normalize_obfuscation(text: str) -> str:
|
| 63 |
+
"""Normalize text: collapse whitespace, remove zero-width, apply basic homoglyph map."""
|
| 64 |
+
t = ZERO_WIDTH_PATTERN.sub('', text)
|
| 65 |
+
t = re.sub(r'\s+', ' ', t)
|
| 66 |
+
out_chars = []
|
| 67 |
+
for ch in t:
|
| 68 |
+
out_chars.append(HOMOGLYPH_MAP.get(ch, ch))
|
| 69 |
+
return ''.join(out_chars).strip()
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def shannon_entropy(s: str) -> float:
|
| 73 |
+
"""Return Shannon character entropy of string s."""
|
| 74 |
+
if not s:
|
| 75 |
+
return 0.0
|
| 76 |
+
s = s.replace(" ", "")
|
| 77 |
+
freq = {}
|
| 78 |
+
for c in s:
|
| 79 |
+
freq[c] = freq.get(c, 0) + 1
|
| 80 |
+
ent = 0.0
|
| 81 |
+
L = len(s)
|
| 82 |
+
for v in freq.values():
|
| 83 |
+
p = v / L
|
| 84 |
+
ent -= p * math.log2(p)
|
| 85 |
+
return ent
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
###########################
|
| 89 |
+
# Heuristic detectors
|
| 90 |
+
###########################
|
| 91 |
+
|
| 92 |
+
# suspicious URL-like tokens (shortlist of TLDs frequently used for obfuscation)
|
| 93 |
+
URL_OBFUSCATION_RE = re.compile(
|
| 94 |
+
r'([a-z0-9\-]{1,20}\s*[\.\[\(]? ?(?:link|site|xyz|to|ly|pw|click)\b)|' # e.g. site.link or site . link
|
| 95 |
+
r'(https?://)?[^\s]{1,64}\.(?:link|site|xyz|to|ly|pw|click)\b',
|
| 96 |
+
re.I
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
JAILBREAK_PATTERNS = [
|
| 100 |
+
re.compile(r"ignore (?:previous|all) instructions", re.I),
|
| 101 |
+
re.compile(r"(?:bypass|disable) (?:filters|moderation|safety)", re.I),
|
| 102 |
+
re.compile(r"rewire the (?:system|assistant) prompt", re.I),
|
| 103 |
+
re.compile(r"output (?:the|the full) system prompt", re.I),
|
| 104 |
+
]
|
| 105 |
+
|
| 106 |
+
ASCII_ART_RE = re.compile(r'[\u2500-\u259F]|[_\-\|]{6,}|(?:\bASCII\b)', re.I)
|
| 107 |
+
|
| 108 |
+
# catches long runs of punctuation / separators (often used to hide tokens)
|
| 109 |
+
OBFUSCATION_SEP_RE = re.compile(r'([^\w\s]{2,}\s*){2,}')
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def heuristic_scan(raw: str, normalized: str) -> List[Dict[str, Any]]:
|
| 113 |
+
flags = []
|
| 114 |
+
# URL heuristics
|
| 115 |
+
if URL_OBFUSCATION_RE.search(raw) or URL_OBFUSCATION_RE.search(normalized):
|
| 116 |
+
flags.append({"type": "hidden_link_heuristic", "explain": "Suspicious or obfuscated URL-like token detected by regex."})
|
| 117 |
+
|
| 118 |
+
# ascii-art / block text / low entropy
|
| 119 |
+
ent = shannon_entropy(re.sub(r'\s+', '', normalized))
|
| 120 |
+
if ASCII_ART_RE.search(raw) or ent < THRESHOLDS["ascii_entropy"]:
|
| 121 |
+
flags.append({"type": "ascii_art_heuristic", "explain": f"ASCII-art-like characters or low entropy text (entropy={ent:.2f})."})
|
| 122 |
+
|
| 123 |
+
# jailbreak heuristics
|
| 124 |
+
jail_matches = [p.pattern for p in JAILBREAK_PATTERNS if p.search(normalized)]
|
| 125 |
+
if jail_matches:
|
| 126 |
+
flags.append({"type": "ai_jailbreak_heuristic", "explain": "Patterns commonly used to override model safety detected.", "matches": jail_matches})
|
| 127 |
+
|
| 128 |
+
# obfuscation separators
|
| 129 |
+
if OBFUSCATION_SEP_RE.search(normalized):
|
| 130 |
+
flags.append({"type": "filter_obfuscation_heuristic", "explain": "Many non-alphanumeric separators or repeated punctuation — possible obfuscation."})
|
| 131 |
+
|
| 132 |
+
return flags
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
###########################
|
| 136 |
+
# Model loading & helpers
|
| 137 |
+
###########################
|
| 138 |
+
|
| 139 |
+
def safe_load_tokenizer_and_model(name: str) -> Optional[Tuple]:
|
| 140 |
+
"""Try to load tokenizer and model; return None on failure gracefully."""
|
| 141 |
+
try:
|
| 142 |
+
tokenizer = AutoTokenizer.from_pretrained(name, use_fast=True)
|
| 143 |
+
model = AutoModelForSequenceClassification.from_pretrained(name)
|
| 144 |
+
model.eval()
|
| 145 |
+
if torch.cuda.is_available():
|
| 146 |
+
try:
|
| 147 |
+
model.to("cuda")
|
| 148 |
+
except Exception:
|
| 149 |
+
logger.warning("Could not move model to cuda.")
|
| 150 |
+
logger.info(f"Loaded model {name}")
|
| 151 |
+
return tokenizer, model
|
| 152 |
+
except Exception as e:
|
| 153 |
+
logger.warning(f"Failed to load {name}: {e}")
|
| 154 |
+
return None
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def load_models():
|
| 158 |
+
"""Populate MODEL_HANDLES with tokenizer+model pairs. Called once at import or app init."""
|
| 159 |
+
# load harm models list
|
| 160 |
+
for mname in HARM_MODELS:
|
| 161 |
+
res = safe_load_tokenizer_and_model(mname)
|
| 162 |
+
if res:
|
| 163 |
+
tokenizer, model = res
|
| 164 |
+
# attempt to extract label mapping (if model has config.id2label)
|
| 165 |
+
label_map = getattr(model.config, "id2label", None) or {}
|
| 166 |
+
MODEL_HANDLES["harm"].append((mname, tokenizer, model, label_map))
|
| 167 |
+
|
| 168 |
+
# load URL model
|
| 169 |
+
res = safe_load_tokenizer_and_model(URL_MODEL)
|
| 170 |
+
if res:
|
| 171 |
+
tokenizer, model = res
|
| 172 |
+
label_map = getattr(model.config, "id2label", None) or {}
|
| 173 |
+
MODEL_HANDLES["url"] = (URL_MODEL, tokenizer, model, label_map)
|
| 174 |
+
|
| 175 |
+
# Call at import
|
| 176 |
+
try:
|
| 177 |
+
load_models()
|
| 178 |
+
except Exception as e:
|
| 179 |
+
# keep running: models may be loaded later or in Space with more resources
|
| 180 |
+
logger.warning(f"Model loading raised: {e}")
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
###########################
|
| 184 |
+
# Model runners
|
| 185 |
+
###########################
|
| 186 |
+
|
| 187 |
+
def run_sequence_model(tokenizer, model, text: str, max_length=512) -> Dict[str, float]:
|
| 188 |
+
"""Run a sequence classification model and return label->prob mapping (softmax)."""
|
| 189 |
+
inputs = tokenizer(text, truncation=True, max_length=max_length, return_tensors="pt")
|
| 190 |
+
if torch.cuda.is_available() and next(model.parameters(), None) is not None:
|
| 191 |
+
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
| 192 |
+
with torch.no_grad():
|
| 193 |
+
outputs = model(**inputs)
|
| 194 |
+
logits = outputs.logits
|
| 195 |
+
probs = torch.softmax(logits, dim=-1).cpu().numpy()[0]
|
| 196 |
+
# build mapping
|
| 197 |
+
id2label = getattr(model.config, "id2label", {})
|
| 198 |
+
if id2label:
|
| 199 |
+
return {id2label.get(i, str(i)): float(probs[i]) for i in range(len(probs))}
|
| 200 |
+
else:
|
| 201 |
+
# fallback: numeric labels
|
| 202 |
+
return {str(i): float(probs[i]) for i in range(len(probs))}
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def aggregate_harm_predictions(preds: List[Dict[str, float]]) -> Dict[str, Any]:
|
| 206 |
+
"""
|
| 207 |
+
Combine multiple harm model outputs.
|
| 208 |
+
We compute per-label averages and maxes, and decide whether to flag.
|
| 209 |
+
"""
|
| 210 |
+
if not preds:
|
| 211 |
+
return {"combined": {}, "note": "no harm models loaded"}
|
| 212 |
+
label_set = set()
|
| 213 |
+
for p in preds:
|
| 214 |
+
label_set.update(p.keys())
|
| 215 |
+
combined = {}
|
| 216 |
+
for lbl in label_set:
|
| 217 |
+
vals = [p.get(lbl, 0.0)
|