|
|
import gradio as gr |
|
|
import torch |
|
|
from transformers import pipeline |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MODEL_NAME = "Phonepadith/whisper-3-large-turbo-lao-finetuned-v1" |
|
|
|
|
|
device = "cpu" |
|
|
torch_dtype = torch.float32 |
|
|
|
|
|
asr_pipeline = pipeline( |
|
|
"automatic-speech-recognition", |
|
|
model=MODEL_NAME, |
|
|
tokenizer=MODEL_NAME, |
|
|
feature_extractor=MODEL_NAME, |
|
|
device=-1, |
|
|
torch_dtype=torch_dtype, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def transcribe(audio_file): |
|
|
if audio_file is None: |
|
|
return "❌ Please upload an audio file." |
|
|
try: |
|
|
result = asr_pipeline(audio_file) |
|
|
text = result["text"] |
|
|
return f"🧩 Lao Transcription:\n\n{text}" |
|
|
except Exception as e: |
|
|
return f"❌ Error: {str(e)}" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
title = "🎧 Lao Whisper Test (CPU)" |
|
|
description = """ |
|
|
ທົດສອບຮູບແບບຈຳລອງ Whisper ທີ່ປັບປຸງໃຫ້ຮັບຮູ້ພາສາລາວ 🇱🇦 |
|
|
Upload an audio file (`.wav`, `.mp3`, `.m4a`, `.flac`) and get the Lao transcription. |
|
|
""" |
|
|
|
|
|
iface = gr.Interface( |
|
|
fn=transcribe, |
|
|
inputs=gr.Audio(type="filepath", label="🎵 Upload Lao Speech Audio"), |
|
|
outputs=gr.Textbox(label="🧾 Transcription Result", lines=8), |
|
|
title=title, |
|
|
description=description, |
|
|
allow_flagging="never", |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
iface.launch() |
|
|
|