Gopala Krishna
commited on
Commit
·
8cb45d3
1
Parent(s):
46d9da1
working with File, Customer1, Customer2 inputs
Browse files- .vs/UBCFProductRecommendations/FileContentIndex/23001fe7-f3c2-40de-ac4d-18f66948daf0.vsidx +0 -0
- .vs/UBCFProductRecommendations/FileContentIndex/4de817bd-07d4-46fb-b29a-c52bae7ffd85.vsidx +0 -0
- .vs/UBCFProductRecommendations/FileContentIndex/56a4bbc1-0e13-4544-9452-68681c9eecbc.vsidx +0 -0
- .vs/UBCFProductRecommendations/FileContentIndex/7ff40909-b5d8-4c88-8906-d6cc681c52b1.vsidx +0 -0
- .vs/UBCFProductRecommendations/FileContentIndex/800f1087-579e-4bc8-8fc3-587302d5fa2d.vsidx +0 -0
- .vs/UBCFProductRecommendations/FileContentIndex/c3aa39ba-89f8-4970-a24f-fff79ecea051.vsidx +0 -0
- .vs/UBCFProductRecommendations/v17/.wsuo +0 -0
- .vs/VSWorkspaceState.json +1 -1
- .vs/slnx.sqlite +0 -0
- Online_Retail.xlsx → UBCF_Online_Retail.xlsx +0 -0
- app.py +58 -44
.vs/UBCFProductRecommendations/FileContentIndex/23001fe7-f3c2-40de-ac4d-18f66948daf0.vsidx
DELETED
|
Binary file (455 Bytes)
|
|
|
.vs/UBCFProductRecommendations/FileContentIndex/4de817bd-07d4-46fb-b29a-c52bae7ffd85.vsidx
DELETED
|
Binary file (587 Bytes)
|
|
|
.vs/UBCFProductRecommendations/FileContentIndex/56a4bbc1-0e13-4544-9452-68681c9eecbc.vsidx
DELETED
|
Binary file (8.62 kB)
|
|
|
.vs/UBCFProductRecommendations/FileContentIndex/7ff40909-b5d8-4c88-8906-d6cc681c52b1.vsidx
ADDED
|
Binary file (11.7 kB). View file
|
|
|
.vs/UBCFProductRecommendations/FileContentIndex/800f1087-579e-4bc8-8fc3-587302d5fa2d.vsidx
ADDED
|
Binary file (537 Bytes). View file
|
|
|
.vs/UBCFProductRecommendations/FileContentIndex/c3aa39ba-89f8-4970-a24f-fff79ecea051.vsidx
ADDED
|
Binary file (224 Bytes). View file
|
|
|
.vs/UBCFProductRecommendations/v17/.wsuo
CHANGED
|
Binary files a/.vs/UBCFProductRecommendations/v17/.wsuo and b/.vs/UBCFProductRecommendations/v17/.wsuo differ
|
|
|
.vs/VSWorkspaceState.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"ExpandedNodes": [
|
| 3 |
""
|
| 4 |
],
|
| 5 |
-
"SelectedNode": "\\
|
| 6 |
"PreviewInSolutionExplorer": false
|
| 7 |
}
|
|
|
|
| 2 |
"ExpandedNodes": [
|
| 3 |
""
|
| 4 |
],
|
| 5 |
+
"SelectedNode": "\\app.py",
|
| 6 |
"PreviewInSolutionExplorer": false
|
| 7 |
}
|
.vs/slnx.sqlite
CHANGED
|
Binary files a/.vs/slnx.sqlite and b/.vs/slnx.sqlite differ
|
|
|
Online_Retail.xlsx → UBCF_Online_Retail.xlsx
RENAMED
|
File without changes
|
app.py
CHANGED
|
@@ -1,48 +1,62 @@
|
|
| 1 |
-
|
| 2 |
import pandas as pd
|
| 3 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
)
|
| 16 |
|
| 17 |
-
|
| 18 |
-
CustomerID_Item_matrix = CustomerID_Item_matrix.applymap(lambda x: 1 if x > 0 else 0)
|
| 19 |
-
|
| 20 |
-
# Create User to User similarity matrix.
|
| 21 |
-
user_to_user_similarity_matrix = pd.DataFrame(
|
| 22 |
-
cosine_similarity(CustomerID_Item_matrix)
|
| 23 |
-
)
|
| 24 |
-
|
| 25 |
-
# Update index to corresponding CustomerID.
|
| 26 |
-
user_to_user_similarity_matrix.columns = CustomerID_Item_matrix.index
|
| 27 |
-
user_to_user_similarity_matrix['CustomerID'] = CustomerID_Item_matrix.index
|
| 28 |
-
user_to_user_similarity_matrix = user_to_user_similarity_matrix.set_index('CustomerID')
|
| 29 |
-
|
| 30 |
-
# Display CustomerID (12702) purchased items.
|
| 31 |
-
items_purchased_by_X = set(CustomerID_Item_matrix.loc[12702.0].iloc[
|
| 32 |
-
CustomerID_Item_matrix.loc[12702.0].to_numpy().nonzero()].index)
|
| 33 |
-
|
| 34 |
-
# Display CustomerID (14608) purchased items.
|
| 35 |
-
items_purchased_by_Y = set(CustomerID_Item_matrix.loc[14608.0].iloc[
|
| 36 |
-
CustomerID_Item_matrix.loc[14608.0].to_numpy().nonzero()].index)
|
| 37 |
-
|
| 38 |
-
# Find out items which purchased by X (12702) but not yet purchased by Y (14608).
|
| 39 |
-
items_to_recommend_to_Y = items_purchased_by_X - items_purchased_by_Y
|
| 40 |
-
|
| 41 |
-
# Display the list of items recommended for Y (14608) with item Description.
|
| 42 |
-
print(df1a.loc[
|
| 43 |
-
df1a['StockCode'].isin(items_to_recommend_to_Y),
|
| 44 |
-
['StockCode', 'Description']
|
| 45 |
-
].drop_duplicates().set_index('StockCode'))
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
def recommend_items(file, customer_id_1, customer_id_2):
|
| 6 |
+
# Read data source Excel file.
|
| 7 |
+
df1 = pd.read_excel("UBCF_Online_Retail.xlsx")
|
| 8 |
+
df1a = df1.dropna(subset=['CustomerID'])
|
| 9 |
+
|
| 10 |
+
# Create CustomerID vs Item (Purchased Items, " StockCode) matrix by pivot table function.
|
| 11 |
+
CustomerID_Item_matrix = df1a.pivot_table(
|
| 12 |
+
index='CustomerID',
|
| 13 |
+
columns='StockCode',
|
| 14 |
+
values='Quantity',
|
| 15 |
+
aggfunc='sum'
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
# Update illustration of the matrix, 1 to represent customer have purchased item, 0 to represent customer haven't purchased.
|
| 19 |
+
CustomerID_Item_matrix = CustomerID_Item_matrix.applymap(lambda x: 1 if x > 0 else 0)
|
| 20 |
+
|
| 21 |
+
# Create User to User similarity matrix.
|
| 22 |
+
user_to_user_similarity_matrix = pd.DataFrame(
|
| 23 |
+
cosine_similarity(CustomerID_Item_matrix)
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# Update index to corresponding CustomerID.
|
| 27 |
+
user_to_user_similarity_matrix.columns = CustomerID_Item_matrix.index
|
| 28 |
+
user_to_user_similarity_matrix['CustomerID'] = CustomerID_Item_matrix.index
|
| 29 |
+
user_to_user_similarity_matrix = user_to_user_similarity_matrix.set_index('CustomerID')
|
| 30 |
+
|
| 31 |
+
# Display CustomerID (customer_id_1) purchased items.
|
| 32 |
+
items_purchased_by_X = set(CustomerID_Item_matrix.loc[customer_id_1].iloc[
|
| 33 |
+
CustomerID_Item_matrix.loc[customer_id_1].to_numpy().nonzero()].index)
|
| 34 |
+
|
| 35 |
+
# Display CustomerID (customer_id_2) purchased items.
|
| 36 |
+
items_purchased_by_Y = set(CustomerID_Item_matrix.loc[customer_id_2].iloc[
|
| 37 |
+
CustomerID_Item_matrix.loc[customer_id_2].to_numpy().nonzero()].index)
|
| 38 |
+
|
| 39 |
+
# Find out items which purchased by X (customer_id_1) but not yet purchased by Y (customer_id_2).
|
| 40 |
+
items_to_recommend_to_Y = items_purchased_by_X - items_purchased_by_Y
|
| 41 |
+
|
| 42 |
+
# Return the list of items recommended for Y (customer_id_2) with item Description.
|
| 43 |
+
return df1a.loc[
|
| 44 |
+
df1a['StockCode'].isin(items_to_recommend_to_Y),
|
| 45 |
+
['StockCode', 'Description']
|
| 46 |
+
].drop_duplicates().set_index('StockCode')
|
| 47 |
+
|
| 48 |
+
# Create a Gradio interface
|
| 49 |
+
iface = gr.Interface(
|
| 50 |
+
fn=recommend_items,
|
| 51 |
+
inputs=[
|
| 52 |
+
gr.inputs.File(label="Excel file (.xlsx)"),
|
| 53 |
+
gr.inputs.Number(label="Customer ID 1"),
|
| 54 |
+
gr.inputs.Number(label="Customer ID 2"),
|
| 55 |
+
],
|
| 56 |
+
outputs="dataframe",
|
| 57 |
+
title="Item Recommendation System",
|
| 58 |
+
description="This system recommends items for a customer based on another customer's purchase history.",
|
| 59 |
+
allow_flagging=False
|
| 60 |
)
|
| 61 |
|
| 62 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|