File size: 11,404 Bytes
51a1e24
 
 
 
 
 
 
 
 
 
38dac5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f34545
 
 
 
38dac5e
 
4f34545
 
38dac5e
 
 
 
 
4f34545
 
38dac5e
 
 
 
 
 
 
 
 
4f34545
 
38dac5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51a1e24
 
 
 
 
 
 
 
 
 
 
 
2a4cbaa
51a1e24
 
 
c9db04a
51a1e24
c239fc5
51a1e24
38dac5e
51a1e24
 
 
 
 
 
38dac5e
51a1e24
 
 
 
 
 
 
 
 
38dac5e
 
 
 
51a1e24
 
2a4cbaa
51a1e24
 
 
 
 
c239fc5
2a4cbaa
38dac5e
2a4cbaa
 
51a1e24
 
 
 
 
 
 
 
 
c9db04a
 
 
51a1e24
 
 
 
38dac5e
51a1e24
 
 
 
38dac5e
2a4cbaa
38dac5e
 
51a1e24
 
 
 
38dac5e
 
51a1e24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c239fc5
 
 
 
 
38dac5e
c239fc5
 
51a1e24
 
 
 
 
46bf090
51a1e24
38dac5e
 
51a1e24
0e49aa7
 
 
 
 
 
 
12d3bad
51a1e24
 
 
 
 
 
 
 
 
c239fc5
51a1e24
38dac5e
51a1e24
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import gradio as gr
import numpy as np
import random
import torch
import spaces

from PIL import Image
from diffusers import QwenImageEditPipeline

import os
import base64
import json

SYSTEM_PROMPT = '''
# Edit Instruction Rewriter
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited.  

Please strictly follow the rewriting rules below:

## 1. General Principles
- Keep the rewritten prompt **concise**. Avoid overly long sentences and reduce unnecessary descriptive language.  
- If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary.  
- Keep the core intention of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility.  
- All added objects or modifications must align with the logic and style of the edited input image’s overall scene.  

## 2. Task Type Handling Rules
### 1. Add, Delete, Replace Tasks
- If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar.  
- If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example:  
    > Original: "Add an animal"  
    > Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera"  
- Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid.  
- For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X.  

### 2. Text Editing Tasks
- All text content must be enclosed in English double quotes `" "`. Do not translate or alter the original language of the text, and do not change the capitalization.  
- **For text replacement tasks, always use the fixed template:**
    - `Replace "xx" to "yy"`.  
    - `Replace the xx bounding box to "yy"`.  
- If the user does not specify text content, infer and add concise text based on the instruction and the input image’s context. For example:  
    > Original: "Add a line of text" (poster)  
    > Rewritten: "Add text \"LIMITED EDITION\" at the top center with slight shadow"  
- Specify text position, color, and layout in a concise way.  

### 3. Human Editing Tasks
- Maintain the person’s core visual consistency (ethnicity, gender, age, hairstyle, expression, outfit, etc.).  
- If modifying appearance (e.g., clothes, hairstyle), ensure the new element is consistent with the original style.  
- **For expression changes, they must be natural and subtle, never exaggerated.**  
- If deletion is not specifically emphasized, the most important subject in the original image (e.g., a person, an animal) should be preserved.
    - For background change tasks, emphasize maintaining subject consistency at first.  
- Example:  
    > Original: "Change the person’s hat"  
    > Rewritten: "Replace the man’s hat with a dark brown beret; keep smile, short hair, and gray jacket unchanged"  

### 4. Style Transformation or Enhancement Tasks
- If a style is specified, describe it concisely with key visual traits. For example:  
    > Original: "Disco style"  
    > Rewritten: "1970s disco: flashing lights, disco ball, mirrored walls, colorful tones"  
- If the instruction says "use reference style" or "keep current style," analyze the input image, extract main features (color, composition, texture, lighting, art style), and integrate them concisely.  
- **For coloring tasks, including restoring old photos, always use the fixed template:** "Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration"  
- If there are other changes, place the style description at the end.

## 3. Rationality and Logic Checks
- Resolve contradictory instructions: e.g., "Remove all trees but keep all trees" should be logically corrected.  
- Add missing key information: if position is unspecified, choose a reasonable area based on composition (near subject, empty space, center/edges).  

# Output Format Example
```json
{
   "Rewritten": "..."
}
'''

def polish_prompt(prompt, img):
    prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:"
    success=False
    while not success:
        try:
            result = api(prompt, [img])
            # print(f"Result: {result}")
            # print(f"Polished Prompt: {polished_prompt}")
            if isinstance(result, str):
                result = result.replace('```json','')
                result = result.replace('```','')
                result = json.loads(result)
            else:
                result = json.loads(result)

            polished_prompt = result['Rewritten']
            polished_prompt = polished_prompt.strip()
            polished_prompt = polished_prompt.replace("\n", " ")
            success = True
        except Exception as e:
            print(f"[Warning] Error during API call: {e}")
    return polished_prompt


def encode_image(pil_image):
    import io
    buffered = io.BytesIO()
    pil_image.save(buffered, format="PNG")
    return base64.b64encode(buffered.getvalue()).decode("utf-8")




def api(prompt, img_list, model="qwen-vl-max-latest", kwargs={}):
    import dashscope
    api_key = os.environ.get('DASH_API_KEY')
    if not api_key:
        raise EnvironmentError("DASH_API_KEY is not set")
    assert model in ["qwen-vl-max-latest"], f"Not implemented model {model}"
    sys_promot = "you are a helpful assistant, you should provide useful answers to users."
    messages = [
        {"role": "system", "content": sys_promot},
        {"role": "user", "content": []}]
    for img in img_list:
        messages[1]["content"].append(
            {"image": f"data:image/png;base64,{encode_image(img)}"})
    messages[1]["content"].append({"text": f"{prompt}"})

    response_format = kwargs.get('response_format', None)

    response = dashscope.MultiModalConversation.call(
        api_key=api_key,
        model=model, # For example, use qwen-plus here. You can change the model name as needed. Model list: https://help.aliyun.com/zh/model-studio/getting-started/models
        messages=messages,
        result_format='message',
        response_format=response_format,
        )

    if response.status_code == 200:
        return response.output.choices[0].message.content[0]['text']
    else:
        raise Exception(f'Failed to post: {response}')

# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load the model pipeline
pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=dtype).to(device)

# --- UI Constants and Helpers ---
MAX_SEED = np.iinfo(np.int32).max

# --- Main Inference Function (with hardcoded negative prompt) ---
@spaces.GPU(duration=120)
def infer(
    image,
    prompt,
    seed=120,
    randomize_seed=False,
    true_guidance_scale=1.0,
    num_inference_steps=50,
    rewrite_prompt=True,
    progress=gr.Progress(track_tqdm=True),
):
    """
    Generates an image using the local Qwen-Image diffusers pipeline.
    """
    # Hardcode the negative prompt as requested
    negative_prompt = " "
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    # Set up the generator for reproducibility
    generator = torch.Generator(device=device).manual_seed(seed)
    
    print(f"Calling pipeline with prompt: '{prompt}'")
    print(f"Negative Prompt: '{negative_prompt}'")
    print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}")
    if rewrite_prompt:
        prompt = polish_prompt(prompt, image)
        print(f"Rewritten Prompt: {prompt}")

    # Generate the image
    images = pipe(
        image,
        prompt=prompt,
        negative_prompt=negative_prompt,
        num_inference_steps=num_inference_steps,
        generator=generator,
        true_cfg_scale=true_guidance_scale,
        num_images_per_prompt=1
    ).images
    
    return images[0], seed

# --- Examples and UI Layout ---
examples = []

css = """
#col-container {
    margin: 0 auto;
    max-width: 1024px;
}
#edit_text{
    margin-top: -62px !important
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML('<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Logo" width="400" style="display: block; margin: 0 auto;">')
        gr.Markdown("[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers.")
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Input Image", show_label=False, type="pil")

            result = gr.Image(label="Result", show_label=False, type="pil")
        with gr.Row():
            prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    placeholder="describe the edit instruction",
                    container=False,
            )
            run_button = gr.Button("Edit!", variant="primary")

        with gr.Accordion("Advanced Settings", open=False):
            # Negative prompt UI element is removed here

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():

                true_guidance_scale = gr.Slider(
                    label="True guidance scale",
                    minimum=1.0,
                    maximum=10.0,
                    step=0.1,
                    value=4.0
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=50,
                )
                
                rewrite_prompt = gr.Checkbox(label="Rewrite prompt", value=True)

        gr.Examples(examples=[
                ["neon_sign.png", "change the text to read 'Qwen Image Edit is here'"],
                ["cat_sitting.jpg", "make the cat floating in the air and holding a sign that reads 'this is fun' written with a blue crayon"],
                ["pie.png", "turn the style of the photo to vintage comic book"]],
                    inputs=[input_image, prompt], 
                    outputs=[result, seed], 
                    fn=infer, 
                    cache_examples="lazy")

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            input_image,
            prompt,
            seed,
            randomize_seed,
            true_guidance_scale,
            num_inference_steps,
            rewrite_prompt,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()