from typing import Any from typing import Callable from typing import ParamSpec import spaces import torch from torch.utils._pytree import tree_map from spaces.zero.torch.aoti import ZeroGPUCompiledModel, ZeroGPUWeights P = ParamSpec('P') TRANSFORMER_IMAGE_SEQ_LENGTH_DIM = torch.export.Dim('image_seq_length') TRANSFORMER_TEXT_SEQ_LENGTH_DIM = torch.export.Dim('text_seq_length') TRANSFORMER_DYNAMIC_SHAPES = { 'hidden_states': { 1: TRANSFORMER_IMAGE_SEQ_LENGTH_DIM, }, 'encoder_hidden_states': { 1: TRANSFORMER_TEXT_SEQ_LENGTH_DIM, }, 'encoder_hidden_states_mask': { 1: TRANSFORMER_TEXT_SEQ_LENGTH_DIM, }, 'image_rotary_emb': ({ 0: TRANSFORMER_IMAGE_SEQ_LENGTH_DIM, }, { 0: TRANSFORMER_TEXT_SEQ_LENGTH_DIM, }), } INDUCTOR_CONFIGS = { 'conv_1x1_as_mm': True, 'epilogue_fusion': False, 'coordinate_descent_tuning': True, 'coordinate_descent_check_all_directions': True, 'max_autotune': True, 'triton.cudagraphs': True, } def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs): @spaces.GPU(duration=1500) def compile_transformer(): # Only capture what the first `transformer_block` sees. with spaces.aoti_capture(pipeline.transformer.transformer_blocks[0]) as call: pipeline(*args, **kwargs) dynamic_shapes = tree_map(lambda t: None, call.kwargs) dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES # Optionally quantize it. # quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig()) # Only export the first transformer block. exported = torch.export.export( mod=pipeline.transformer.transformer_blocks[0], args=call.args, kwargs=call.kwargs, dynamic_shapes=dynamic_shapes, ) return spaces.aoti_compile(exported, INDUCTOR_CONFIGS) compiled = compile_transformer() for block in pipeline.transformer.transformer_blocks: weights = ZeroGPUWeights(block.state_dict()) compiled_block = ZeroGPUCompiledModel(compiled.archive_file, weights) block.forward = compiled_block