Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import tempfile
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import torch
|
| 5 |
+
import torchaudio
|
| 6 |
+
import spaces
|
| 7 |
+
from fastapi import FastAPI, File, UploadFile, Form
|
| 8 |
+
from fastapi.responses import FileResponse
|
| 9 |
+
from tortoise.api import TextToSpeech
|
| 10 |
+
from tortoise.utils.audio import load_audio
|
| 11 |
+
import numpy as np
|
| 12 |
+
import uvicorn
|
| 13 |
+
from typing import Optional
|
| 14 |
+
import uuid
|
| 15 |
+
from pydub import AudioSegment
|
| 16 |
+
|
| 17 |
+
# Create output directory if it doesn't exist
|
| 18 |
+
os.makedirs("outputs", exist_ok=True)
|
| 19 |
+
|
| 20 |
+
# Check for CUDA availability (this will show CPU due to Zero-GPU)
|
| 21 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
+
print(f"Initial device check: {device}")
|
| 23 |
+
|
| 24 |
+
# Create a tensor to verify Zero-GPU is working
|
| 25 |
+
zero = torch.Tensor([0])
|
| 26 |
+
if torch.cuda.is_available():
|
| 27 |
+
zero = zero.cuda()
|
| 28 |
+
print(f"Zero tensor device: {zero.device}")
|
| 29 |
+
|
| 30 |
+
# Initialize FastAPI
|
| 31 |
+
app = FastAPI(title="Tortoise TTS API")
|
| 32 |
+
|
| 33 |
+
# Initialize TTS (will be loaded on demand with Zero-GPU)
|
| 34 |
+
tts = None
|
| 35 |
+
|
| 36 |
+
# Available preset voice options
|
| 37 |
+
PRESET_VOICES = ["random", "angie", "daniel", "deniro", "emma", "freeman",
|
| 38 |
+
"geralt", "halle", "jlaw", "lj", "mol", "myself", "pat",
|
| 39 |
+
"snakes", "tim_reynolds", "tom", "train_atkins", "train_daws",
|
| 40 |
+
"train_dotrice", "train_dreams", "train_empire", "train_grace",
|
| 41 |
+
"train_kennard", "train_lescault", "train_mouse", "weaver", "william"]
|
| 42 |
+
|
| 43 |
+
def process_audio_file(audio_file_path):
|
| 44 |
+
"""Process uploaded audio file to ensure it meets Tortoise requirements"""
|
| 45 |
+
# Load audio file
|
| 46 |
+
audio = AudioSegment.from_file(audio_file_path)
|
| 47 |
+
|
| 48 |
+
# Convert to WAV format if it's not already
|
| 49 |
+
if not audio_file_path.lower().endswith('.wav'):
|
| 50 |
+
temp_wav = tempfile.NamedTemporaryFile(suffix='.wav', delete=False)
|
| 51 |
+
audio.export(temp_wav.name, format="wav")
|
| 52 |
+
audio_file_path = temp_wav.name
|
| 53 |
+
|
| 54 |
+
# Resample to 22.05kHz which is what Tortoise expects
|
| 55 |
+
y, sr = torchaudio.load(audio_file_path)
|
| 56 |
+
if sr != 22050:
|
| 57 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=22050)
|
| 58 |
+
y = resampler(y)
|
| 59 |
+
temp_file = tempfile.NamedTemporaryFile(suffix='.wav', delete=False)
|
| 60 |
+
torchaudio.save(temp_file.name, y, 22050)
|
| 61 |
+
audio_file_path = temp_file.name
|
| 62 |
+
|
| 63 |
+
return audio_file_path
|
| 64 |
+
|
| 65 |
+
@spaces.GPU
|
| 66 |
+
def generate_tts_with_voice(text, voice_sample_path=None, preset_voice=None):
|
| 67 |
+
"""Generate TTS audio using Tortoise with either a custom voice or preset"""
|
| 68 |
+
global tts
|
| 69 |
+
|
| 70 |
+
try:
|
| 71 |
+
# Now that we're inside the @spaces.GPU decorated function, CUDA should be available
|
| 72 |
+
print(f"GPU function device: {zero.device}")
|
| 73 |
+
|
| 74 |
+
# Initialize TTS model if not already initialized
|
| 75 |
+
if tts is None:
|
| 76 |
+
tts = TextToSpeech(use_deepspeed=True if torch.cuda.is_available() else False)
|
| 77 |
+
print("TTS model initialized")
|
| 78 |
+
|
| 79 |
+
voice_samples = None
|
| 80 |
+
|
| 81 |
+
if voice_sample_path:
|
| 82 |
+
# Process the voice sample
|
| 83 |
+
voice_sample_path = process_audio_file(voice_sample_path)
|
| 84 |
+
voice_samples, _ = load_audio(voice_sample_path, 22050)
|
| 85 |
+
voice_samples = [voice_samples]
|
| 86 |
+
preset_voice = None
|
| 87 |
+
elif preset_voice and preset_voice != "random":
|
| 88 |
+
voice_samples = None
|
| 89 |
+
else: # random voice
|
| 90 |
+
voice_samples = None
|
| 91 |
+
preset_voice = "random"
|
| 92 |
+
|
| 93 |
+
# Generate the speech
|
| 94 |
+
output_id = str(uuid.uuid4())[:8]
|
| 95 |
+
output_path = f"outputs/tts_output_{output_id}.wav"
|
| 96 |
+
|
| 97 |
+
gen = tts.tts_with_preset(
|
| 98 |
+
text,
|
| 99 |
+
voice_samples=voice_samples,
|
| 100 |
+
preset=preset_voice
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
# Save the generated audio
|
| 104 |
+
torchaudio.save(output_path, gen.squeeze(0).cpu(), 24000)
|
| 105 |
+
|
| 106 |
+
return output_path, "Success: TTS generation completed."
|
| 107 |
+
except Exception as e:
|
| 108 |
+
return None, f"Error: {str(e)}"
|
| 109 |
+
|
| 110 |
+
@spaces.GPU
|
| 111 |
+
def tts_interface(text, audio_file, preset_voice, record_audio):
|
| 112 |
+
"""Interface function for Gradio with GPU acceleration"""
|
| 113 |
+
print(f"Processing with device: {zero.device}")
|
| 114 |
+
|
| 115 |
+
voice_sample_path = None
|
| 116 |
+
|
| 117 |
+
# Determine which voice input to use
|
| 118 |
+
if record_audio is not None:
|
| 119 |
+
# Use recorded audio
|
| 120 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.wav')
|
| 121 |
+
temp_file.close()
|
| 122 |
+
record_audio = (record_audio[0], 22050) # Ensure sample rate is 22050
|
| 123 |
+
torchaudio.save(temp_file.name, torch.tensor(record_audio[0]).unsqueeze(0), record_audio[1])
|
| 124 |
+
voice_sample_path = temp_file.name
|
| 125 |
+
elif audio_file is not None:
|
| 126 |
+
# Use uploaded audio file
|
| 127 |
+
voice_sample_path = audio_file
|
| 128 |
+
|
| 129 |
+
# If no custom voice is provided, use the preset
|
| 130 |
+
if voice_sample_path is None and preset_voice == "":
|
| 131 |
+
preset_voice = "random"
|
| 132 |
+
|
| 133 |
+
# Generate TTS
|
| 134 |
+
output_path, message = generate_tts_with_voice(text, voice_sample_path, preset_voice)
|
| 135 |
+
|
| 136 |
+
if output_path:
|
| 137 |
+
return output_path, message
|
| 138 |
+
else:
|
| 139 |
+
return None, message
|
| 140 |
+
|
| 141 |
+
# FastAPI endpoints
|
| 142 |
+
@app.post("/api/tts_with_voice_file/")
|
| 143 |
+
@spaces.GPU
|
| 144 |
+
async def tts_with_voice_file(
|
| 145 |
+
text: str = Form(...),
|
| 146 |
+
voice_file: Optional[UploadFile] = File(None),
|
| 147 |
+
preset_voice: Optional[str] = Form("random")
|
| 148 |
+
):
|
| 149 |
+
"""API endpoint for TTS with an uploaded voice file"""
|
| 150 |
+
try:
|
| 151 |
+
print(f"Processing with device: {zero.device}")
|
| 152 |
+
|
| 153 |
+
voice_sample_path = None
|
| 154 |
+
if voice_file:
|
| 155 |
+
# Save uploaded file temporarily
|
| 156 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(voice_file.filename)[1])
|
| 157 |
+
temp_file.write(await voice_file.read())
|
| 158 |
+
temp_file.close()
|
| 159 |
+
voice_sample_path = temp_file.name
|
| 160 |
+
|
| 161 |
+
output_path, message = generate_tts_with_voice(text, voice_sample_path, preset_voice)
|
| 162 |
+
|
| 163 |
+
if output_path:
|
| 164 |
+
return FileResponse(output_path, media_type="audio/wav", filename="tts_output.wav")
|
| 165 |
+
else:
|
| 166 |
+
return {"status": "error", "message": message}
|
| 167 |
+
except Exception as e:
|
| 168 |
+
return {"status": "error", "message": f"Failed to process: {str(e)}"}
|
| 169 |
+
|
| 170 |
+
@app.post("/api/tts_with_preset/")
|
| 171 |
+
@spaces.GPU
|
| 172 |
+
async def tts_with_preset(
|
| 173 |
+
text: str = Form(...),
|
| 174 |
+
preset_voice: str = Form("random")
|
| 175 |
+
):
|
| 176 |
+
"""API endpoint for TTS with a preset voice"""
|
| 177 |
+
try:
|
| 178 |
+
print(f"Processing with device: {zero.device}")
|
| 179 |
+
|
| 180 |
+
output_path, message = generate_tts_with_voice(text, preset_voice=preset_voice)
|
| 181 |
+
|
| 182 |
+
if output_path:
|
| 183 |
+
return FileResponse(output_path, media_type="audio/wav", filename="tts_output.wav")
|
| 184 |
+
else:
|
| 185 |
+
return {"status": "error", "message": message}
|
| 186 |
+
except Exception as e:
|
| 187 |
+
return {"status": "error", "message": f"Failed to process: {str(e)}"}
|
| 188 |
+
|
| 189 |
+
# Create Gradio interface
|
| 190 |
+
with gr.Blocks(title="Tortoise TTS with Voice Cloning") as demo:
|
| 191 |
+
gr.Markdown("# Tortoise Text-to-Speech with Voice Cloning")
|
| 192 |
+
gr.Markdown("Enter text and either upload a voice sample, record your voice, or select a preset voice.")
|
| 193 |
+
|
| 194 |
+
with gr.Row():
|
| 195 |
+
with gr.Column():
|
| 196 |
+
text_input = gr.Textbox(
|
| 197 |
+
label="Text to speak",
|
| 198 |
+
placeholder="Enter the text you want to convert to speech...",
|
| 199 |
+
lines=5
|
| 200 |
+
)
|
| 201 |
+
preset_voice = gr.Dropdown(
|
| 202 |
+
choices=[""] + PRESET_VOICES,
|
| 203 |
+
label="Preset Voice (optional)",
|
| 204 |
+
value=""
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
with gr.Column():
|
| 208 |
+
gr.Markdown("### Voice Input Options")
|
| 209 |
+
with gr.Tab("Upload Voice"):
|
| 210 |
+
audio_file = gr.Audio(
|
| 211 |
+
label="Upload Voice Sample (optional)",
|
| 212 |
+
type="filepath"
|
| 213 |
+
)
|
| 214 |
+
with gr.Tab("Record Voice"):
|
| 215 |
+
record_audio = gr.Audio(
|
| 216 |
+
label="Record Your Voice (optional)",
|
| 217 |
+
source="microphone"
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
generate_button = gr.Button("Generate Speech")
|
| 221 |
+
|
| 222 |
+
with gr.Row():
|
| 223 |
+
output_audio = gr.Audio(label="Generated Speech")
|
| 224 |
+
output_message = gr.Textbox(label="Status")
|
| 225 |
+
|
| 226 |
+
generate_button.click(
|
| 227 |
+
fn=tts_interface,
|
| 228 |
+
inputs=[text_input, audio_file, preset_voice, record_audio],
|
| 229 |
+
outputs=[output_audio, output_message]
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
gr.Markdown("### API Endpoints")
|
| 233 |
+
gr.Markdown("""
|
| 234 |
+
This app also provides API endpoints:
|
| 235 |
+
|
| 236 |
+
1. **Voice File TTS** - `/api/tts_with_voice_file/`
|
| 237 |
+
- POST request with:
|
| 238 |
+
- `text`: Text to convert to speech (required)
|
| 239 |
+
- `voice_file`: Audio file for voice cloning (optional)
|
| 240 |
+
- `preset_voice`: Name of preset voice (optional, defaults to "random")
|
| 241 |
+
|
| 242 |
+
2. **Preset Voice TTS** - `/api/tts_with_preset/`
|
| 243 |
+
- POST request with:
|
| 244 |
+
- `text`: Text to convert to speech (required)
|
| 245 |
+
- `preset_voice`: Name of preset voice (required)
|
| 246 |
+
|
| 247 |
+
Both endpoints return a WAV file with the generated speech.
|
| 248 |
+
""")
|
| 249 |
+
|
| 250 |
+
# Mount the Gradio app to FastAPI
|
| 251 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
| 252 |
+
|
| 253 |
+
if __name__ == "__main__":
|
| 254 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|