Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,191 +1,97 @@
|
|
| 1 |
import os
|
| 2 |
-
import tempfile
|
| 3 |
import gradio as gr
|
| 4 |
-
import
|
| 5 |
-
import torchaudio
|
| 6 |
-
import spaces
|
| 7 |
-
from huggingface_hub import snapshot_download
|
| 8 |
-
from tortoise.api import TextToSpeech
|
| 9 |
-
from tortoise.utils.audio import load_audio
|
| 10 |
-
import numpy as np
|
| 11 |
-
import uuid
|
| 12 |
-
from pydub import AudioSegment
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
|
| 19 |
-
|
| 20 |
|
| 21 |
-
#
|
| 22 |
-
|
| 23 |
-
if torch.cuda.is_available():
|
| 24 |
-
zero = zero.cuda()
|
| 25 |
-
print(f"Zero tensor device: {zero.device}")
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
# Available preset voice options
|
| 31 |
-
PRESET_VOICES = ["random", "angie", "daniel", "deniro", "emma", "freeman",
|
| 32 |
-
"geralt", "halle", "jlaw", "lj", "mol", "myself", "pat",
|
| 33 |
-
"snakes", "tim_reynolds", "tom", "train_atkins", "train_daws",
|
| 34 |
-
"train_dotrice", "train_dreams", "train_empire", "train_grace",
|
| 35 |
-
"train_kennard", "train_lescault", "train_mouse", "weaver", "william"]
|
| 36 |
-
|
| 37 |
-
def process_audio_file(audio_file_path):
|
| 38 |
-
"""Process uploaded audio file to ensure it meets Tortoise requirements"""
|
| 39 |
-
# Load audio file
|
| 40 |
-
audio = AudioSegment.from_file(audio_file_path)
|
| 41 |
-
|
| 42 |
-
# Convert to WAV format if it's not already
|
| 43 |
-
if not audio_file_path.lower().endswith('.wav'):
|
| 44 |
-
temp_wav = tempfile.NamedTemporaryFile(suffix='.wav', delete=False)
|
| 45 |
-
audio.export(temp_wav.name, format="wav")
|
| 46 |
-
audio_file_path = temp_wav.name
|
| 47 |
-
|
| 48 |
-
# Resample to 22.05kHz which is what Tortoise expects
|
| 49 |
-
y, sr = torchaudio.load(audio_file_path)
|
| 50 |
-
if sr != 22050:
|
| 51 |
-
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=22050)
|
| 52 |
-
y = resampler(y)
|
| 53 |
-
temp_file = tempfile.NamedTemporaryFile(suffix='.wav', delete=False)
|
| 54 |
-
torchaudio.save(temp_file.name, y, 22050)
|
| 55 |
-
audio_file_path = temp_file.name
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
@spaces.GPU
|
| 60 |
-
def generate_tts_with_voice(text, voice_sample_path=None, preset_voice=None):
|
| 61 |
-
"""Generate TTS audio using Tortoise with either a custom voice or preset"""
|
| 62 |
-
global tts
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
print(f"GPU function device: {zero.device}")
|
| 67 |
-
|
| 68 |
-
# Initialize TTS model if not already initialized
|
| 69 |
-
if tts is None:
|
| 70 |
-
tts = TextToSpeech(use_deepspeed=True if torch.cuda.is_available() else False)
|
| 71 |
-
print("TTS model initialized")
|
| 72 |
-
|
| 73 |
-
voice_samples = None
|
| 74 |
-
|
| 75 |
-
if voice_sample_path:
|
| 76 |
-
# Process the voice sample
|
| 77 |
-
voice_sample_path = process_audio_file(voice_sample_path)
|
| 78 |
-
voice_samples, _ = load_audio(voice_sample_path, 22050)
|
| 79 |
-
voice_samples = [voice_samples]
|
| 80 |
-
preset_voice = None
|
| 81 |
-
elif preset_voice and preset_voice != "random":
|
| 82 |
-
voice_samples = None
|
| 83 |
-
else: # random voice
|
| 84 |
-
voice_samples = None
|
| 85 |
-
preset_voice = "random"
|
| 86 |
-
|
| 87 |
-
# Generate the speech
|
| 88 |
-
output_id = str(uuid.uuid4())[:8]
|
| 89 |
-
output_path = f"outputs/tts_output_{output_id}.wav"
|
| 90 |
-
|
| 91 |
-
gen = tts.tts_with_preset(
|
| 92 |
-
text,
|
| 93 |
-
voice_samples=voice_samples,
|
| 94 |
-
preset=preset_voice
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
-
# Save the generated audio
|
| 98 |
-
torchaudio.save(output_path, gen.squeeze(0).cpu(), 24000)
|
| 99 |
-
|
| 100 |
-
return output_path, "Success: TTS generation completed."
|
| 101 |
-
except Exception as e:
|
| 102 |
-
return None, f"Error: {str(e)}"
|
| 103 |
-
|
| 104 |
-
@spaces.GPU
|
| 105 |
-
def tts_interface(text, audio_file, preset_voice, record_audio):
|
| 106 |
-
"""Interface function for Gradio with GPU acceleration"""
|
| 107 |
-
print(f"Processing with device: {zero.device}")
|
| 108 |
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
-
#
|
| 112 |
-
|
| 113 |
-
# Use recorded audio
|
| 114 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.wav')
|
| 115 |
-
temp_file.close()
|
| 116 |
-
record_audio = (record_audio[0], 22050) # Ensure sample rate is 22050
|
| 117 |
-
torchaudio.save(temp_file.name, torch.tensor(record_audio[0]).unsqueeze(0), record_audio[1])
|
| 118 |
-
voice_sample_path = temp_file.name
|
| 119 |
-
elif audio_file is not None:
|
| 120 |
-
# Use uploaded audio file
|
| 121 |
-
voice_sample_path = audio_file
|
| 122 |
|
| 123 |
-
#
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
| 126 |
|
| 127 |
-
#
|
| 128 |
-
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
else:
|
| 133 |
-
return None, message
|
| 134 |
|
| 135 |
-
# Create
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
generate_button.click(
|
| 173 |
-
fn=tts_interface,
|
| 174 |
-
inputs=[text_input, audio_file, preset_voice, record_audio],
|
| 175 |
-
outputs=[output_audio, output_message]
|
| 176 |
)
|
| 177 |
|
| 178 |
-
gr.
|
| 179 |
-
|
| 180 |
-
This app uses Tortoise-TTS to generate high-quality speech from text.
|
| 181 |
-
|
| 182 |
-
You can:
|
| 183 |
-
- Enter any text you want to be spoken
|
| 184 |
-
- Upload or record a voice sample for voice cloning
|
| 185 |
-
- Or select from pre-defined voice presets
|
| 186 |
-
|
| 187 |
-
The app runs on Hugging Face Spaces with Zero-GPU optimization.
|
| 188 |
-
""")
|
| 189 |
|
|
|
|
| 190 |
if __name__ == "__main__":
|
| 191 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
+
from fastrtc import Stream, ReplyOnPause, AdditionalOutputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
# Import your modules
|
| 6 |
+
import stt
|
| 7 |
+
import tts
|
| 8 |
+
import cohereAPI
|
| 9 |
|
| 10 |
+
# Environment variables
|
| 11 |
+
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
|
| 12 |
+
system_message = "You respond concisely, in about 15 words or less"
|
| 13 |
|
| 14 |
+
# Initialize conversation history
|
| 15 |
+
conversation_history = []
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
async def response(audio_file_path):
|
| 18 |
+
global conversation_history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
# Convert speech to text
|
| 21 |
+
user_message = await stt.transcribe_audio(audio_file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
# Add user message to chat history
|
| 24 |
+
yield AdditionalOutputs({"transcript": user_message, "role": "user"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
# Send text to Cohere API
|
| 27 |
+
response_text, updated_history = await cohereAPI.send_message(
|
| 28 |
+
system_message,
|
| 29 |
+
user_message,
|
| 30 |
+
conversation_history,
|
| 31 |
+
COHERE_API_KEY
|
| 32 |
+
)
|
| 33 |
|
| 34 |
+
# Update conversation history
|
| 35 |
+
conversation_history = updated_history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
# Generate speech from text
|
| 38 |
+
_, (sample_rate, speech_array) = await tts.generate_speech(
|
| 39 |
+
response_text,
|
| 40 |
+
voice_preset="random"
|
| 41 |
+
)
|
| 42 |
|
| 43 |
+
# Add assistant message to chat history
|
| 44 |
+
yield AdditionalOutputs({"transcript": response_text, "role": "assistant"})
|
| 45 |
|
| 46 |
+
# Return audio response
|
| 47 |
+
yield (sample_rate, speech_array)
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
# Create FastRTC stream with ReplyOnPause
|
| 50 |
+
stream = Stream(
|
| 51 |
+
handler=ReplyOnPause(response),
|
| 52 |
+
modality="audio",
|
| 53 |
+
mode="send-receive",
|
| 54 |
+
additional_outputs=[
|
| 55 |
+
{"name": "transcript", "type": "text"},
|
| 56 |
+
{"name": "role", "type": "text"}
|
| 57 |
+
]
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# Create Gradio interface that uses the FastRTC stream
|
| 61 |
+
with gr.Blocks(title="Voice Chat Assistant with ReplyOnPause") as demo:
|
| 62 |
+
gr.Markdown("# Voice Chat Assistant")
|
| 63 |
+
gr.Markdown("Speak and pause to trigger a response.")
|
| 64 |
+
|
| 65 |
+
chatbot = gr.Chatbot(label="Conversation")
|
| 66 |
+
|
| 67 |
+
# Mount the FastRTC UI
|
| 68 |
+
stream_ui = stream.ui(label="Speak")
|
| 69 |
+
|
| 70 |
+
# Handle additional outputs from FastRTC to update the chatbot
|
| 71 |
+
def update_chat(transcript, role, history):
|
| 72 |
+
if transcript and role:
|
| 73 |
+
if role == "user":
|
| 74 |
+
history.append((transcript, None))
|
| 75 |
+
elif role == "assistant":
|
| 76 |
+
if history and history[-1][1] is None:
|
| 77 |
+
history[-1] = (history[-1][0], transcript)
|
| 78 |
+
else:
|
| 79 |
+
history.append((None, transcript))
|
| 80 |
+
return history
|
| 81 |
+
|
| 82 |
+
stream_ui.change(
|
| 83 |
+
update_chat,
|
| 84 |
+
inputs=[stream_ui.output_components[0], stream_ui.output_components[1], chatbot],
|
| 85 |
+
outputs=[chatbot]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
)
|
| 87 |
|
| 88 |
+
clear_btn = gr.Button("Clear Conversation")
|
| 89 |
+
clear_btn.click(lambda: [], outputs=[chatbot])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
+
# Launch the app
|
| 92 |
if __name__ == "__main__":
|
| 93 |
+
demo.queue().launch(
|
| 94 |
+
server_name="0.0.0.0",
|
| 95 |
+
share=False,
|
| 96 |
+
show_error=True
|
| 97 |
+
)
|