Rashmi0801's picture
Update app.py
200d8cc verified
raw
history blame
6.72 kB
api_key = "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"
import streamlit as st
from langchain_groq import ChatGroq
from langchain_community.utilities import ArxivAPIWrapper, WikipediaAPIWrapper
from langchain_community.tools import ArxivQueryRun, WikipediaQueryRun, DuckDuckGoSearchRun
from langchain.agents import initialize_agent, AgentType
import os
import requests
import pandas as pd
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Constants for Basic Agent Evaluation
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# Initialize search tools (with warm-up)
@st.cache_resource
def load_tools():
with st.spinner("Initializing tools (first time may take a few seconds)..."):
api_wrapper_arxiv = ArxivAPIWrapper(top_k_results=1, doc_content_chars_max=250)
arxiv = ArxivQueryRun(api_wrapper=api_wrapper_arxiv)
api_wrapper_wiki = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=250)
wiki = WikipediaQueryRun(api_wrapper=api_wrapper_wiki)
search = DuckDuckGoSearchRun(name="Search")
# Warm up tools
arxiv.run("machine learning")
wiki.run("machine learning")
return [search, arxiv, wiki]
tools = load_tools()
# Streamlit app layout
st.title("Langchain - Chat with Search & Evaluation")
# Sidebar for settings
st.sidebar.title("Settings")
api_key = st.sidebar.text_input("Enter your Groq API Key:", type="password")
# Initialize chat messages
if "messages" not in st.session_state:
st.session_state["messages"] = [
{"role": "assistant", "content": "Hi, I am a Chatbot who can search the web and evaluate questions. How can I help you?"}
]
# Display chat messages
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
# Chat input
if prompt := st.chat_input(placeholder="What is machine learning?"):
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
if not api_key:
st.error("Please enter your Groq API key in the sidebar.")
st.stop()
llm = ChatGroq(groq_api_key=api_key, model_name="llama3-70b-8192")
search_agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, handle_parsing_errors=True)
with st.chat_message("assistant"):
response = search_agent.run(st.session_state.messages)
st.session_state.messages.append({'role': 'assistant', "content": response})
st.write(response)
# Basic Agent Evaluation Section
st.sidebar.title("Basic Agent Evaluation")
def run_evaluation():
"""Function to run the evaluation with progress updates"""
if not api_key:
st.error("Please enter your Groq API key in the sidebar.")
return "API key required", pd.DataFrame()
# Setup progress tracking
progress_bar = st.sidebar.progress(0)
status_text = st.sidebar.empty()
results_container = st.empty()
username = "streamlit_user"
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
space_id = os.getenv("SPACE_ID", "local")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id != "local" else "local_execution"
try:
# 1. Fetch Questions
status_text.text("πŸ“‘ Fetching questions...")
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
total_questions = len(questions_data)
status_text.text(f"βœ… Found {total_questions} questions")
if not questions_data:
return "No questions found", pd.DataFrame()
# 2. Initialize Agent (reuse tools from cache)
llm = ChatGroq(groq_api_key=api_key, model_name="llama3-70b-8192")
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, handle_parsing_errors=True)
# 3. Process Questions
results_log = []
answers_payload = []
for i, item in enumerate(questions_data):
progress = (i + 1) / total_questions
progress_bar.progress(progress)
status_text.text(f"πŸ” Processing question {i+1}/{total_questions}...")
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or not question_text:
continue
try:
submitted_answer = agent.run(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer})
# Update results table progressively
if (i + 1) % 3 == 0 or (i + 1) == total_questions: # Update every 3 questions or at end
results_container.dataframe(pd.DataFrame(results_log))
except Exception as e:
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"❌ Error: {str(e)}"})
# 4. Submit Answers
status_text.text("πŸ“€ Submitting answers...")
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"βœ… Submission Successful!\n"
f"πŸ“Š Score: {result_data.get('score', 'N/A')}%\n"
f"πŸ“ Correct: {result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')}\n"
f"πŸ’¬ Message: {result_data.get('message', 'No message')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"❌ Failed: {str(e)}", pd.DataFrame(results_log if 'results_log' in locals() else [])
finally:
progress_bar.empty()
status_text.empty()
# Evaluation button in sidebar
if st.sidebar.button("πŸš€ Run Evaluation & Submit Answers"):
with st.spinner("Starting evaluation..."):
status, results = run_evaluation()
st.sidebar.success("Evaluation completed!")
st.sidebar.text_area("Results", value=status, height=150)
if not results.empty:
st.subheader("πŸ“‹ Detailed Results")
st.dataframe(results, use_container_width=True)