Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,82 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from langchain_groq import ChatGroq
|
3 |
-
from langchain_community.utilities import ArxivAPIWrapper, WikipediaAPIWrapper
|
4 |
-
from langchain_community.tools import ArxivQueryRun, WikipediaQueryRun, DuckDuckGoSearchRun
|
5 |
-
from langchain.agents import initialize_agent, AgentType
|
6 |
-
from langchain.callbacks import StreamlitCallbackHandler
|
7 |
-
import os
|
8 |
-
from dotenv import load_dotenv
|
9 |
-
|
10 |
-
# Used the inbuilt tools of Arxiv and Wikipedia
|
11 |
-
api_wrapper_arxiv = ArxivAPIWrapper(top_k_results=1, doc_content_chars_max=250)
|
12 |
-
arxiv = ArxivQueryRun(api_wrapper=api_wrapper_arxiv)
|
13 |
-
|
14 |
-
api_wrapper_wiki = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=250)
|
15 |
-
wiki = WikipediaQueryRun(api_wrapper=api_wrapper_wiki)
|
16 |
-
|
17 |
-
search = DuckDuckGoSearchRun(name="Search")
|
18 |
-
|
19 |
-
st.title("Langchain - Chat with Search")
|
20 |
-
"""
|
21 |
-
In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app.
|
22 |
-
Try more LangChain 🤝 Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent).
|
23 |
-
"""
|
24 |
-
|
25 |
-
# Sidebar for settings
|
26 |
-
st.sidebar.title("Settings")
|
27 |
-
api_key = st.sidebar.text_input("Enter your Groq API Key:", type="password")
|
28 |
-
|
29 |
-
if "messages" not in st.session_state:
|
30 |
-
st.session_state["messages"] = [
|
31 |
-
{"role":"assistant", "content":"Hi, I am a Chatbot who can search the web. How can I help you ?"}
|
32 |
-
]
|
33 |
-
|
34 |
-
for msg in st.session_state.messages:
|
35 |
-
st.chat_message(msg["role"]).write(msg["content"])
|
36 |
-
|
37 |
-
if prompt:=st.chat_input(placeholder="What is machine learning ?"):
|
38 |
-
st.session_state.messages.append({"role":"user", "content":prompt})
|
39 |
-
st.chat_message("user").write(prompt)
|
40 |
-
|
41 |
-
llm = ChatGroq(groq_api_key=api_key, model_name="Llama3-8b-8192", streaming=True)
|
42 |
-
tools = [search, arxiv, wiki]
|
43 |
-
|
44 |
-
search_agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, handle_parsing_errors=True)
|
45 |
-
|
46 |
-
with st.chat_message("assistant"):
|
47 |
-
st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False)
|
48 |
-
response = search_agent.run(st.session_state.messages, callbacks=[st_cb])
|
49 |
-
st.session_state.messages.append({'role':'assistant', "content":response})
|
50 |
-
st.write(response)
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain_groq import ChatGroq
|
3 |
+
from langchain_community.utilities import ArxivAPIWrapper, WikipediaAPIWrapper
|
4 |
+
from langchain_community.tools import ArxivQueryRun, WikipediaQueryRun, DuckDuckGoSearchRun
|
5 |
+
from langchain.agents import initialize_agent, AgentType
|
6 |
+
from langchain.callbacks import StreamlitCallbackHandler
|
7 |
+
import os
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
|
10 |
+
# Used the inbuilt tools of Arxiv and Wikipedia
|
11 |
+
api_wrapper_arxiv = ArxivAPIWrapper(top_k_results=1, doc_content_chars_max=250)
|
12 |
+
arxiv = ArxivQueryRun(api_wrapper=api_wrapper_arxiv)
|
13 |
+
|
14 |
+
api_wrapper_wiki = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=250)
|
15 |
+
wiki = WikipediaQueryRun(api_wrapper=api_wrapper_wiki)
|
16 |
+
|
17 |
+
search = DuckDuckGoSearchRun(name="Search")
|
18 |
+
|
19 |
+
st.title("Langchain - Chat with Search")
|
20 |
+
"""
|
21 |
+
In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app.
|
22 |
+
Try more LangChain 🤝 Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent).
|
23 |
+
"""
|
24 |
+
|
25 |
+
# Sidebar for settings
|
26 |
+
st.sidebar.title("Settings")
|
27 |
+
api_key = st.sidebar.text_input("Enter your Groq API Key:", type="password")
|
28 |
+
|
29 |
+
if "messages" not in st.session_state:
|
30 |
+
st.session_state["messages"] = [
|
31 |
+
{"role":"assistant", "content":"Hi, I am a Chatbot who can search the web. How can I help you ?"}
|
32 |
+
]
|
33 |
+
|
34 |
+
for msg in st.session_state.messages:
|
35 |
+
st.chat_message(msg["role"]).write(msg["content"])
|
36 |
+
|
37 |
+
if prompt:=st.chat_input(placeholder="What is machine learning ?"):
|
38 |
+
st.session_state.messages.append({"role":"user", "content":prompt})
|
39 |
+
st.chat_message("user").write(prompt)
|
40 |
+
|
41 |
+
llm = ChatGroq(groq_api_key=api_key, model_name="Llama3-8b-8192", streaming=True)
|
42 |
+
tools = [search, arxiv, wiki]
|
43 |
+
|
44 |
+
search_agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, handle_parsing_errors=True)
|
45 |
+
|
46 |
+
with st.chat_message("assistant"):
|
47 |
+
st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False)
|
48 |
+
response = search_agent.run(st.session_state.messages, callbacks=[st_cb])
|
49 |
+
st.session_state.messages.append({'role':'assistant', "content":response})
|
50 |
+
st.write(response)
|
51 |
+
|
52 |
+
# --- Build Gradio Interface using Blocks ---
|
53 |
+
with gr.Blocks() as demo:
|
54 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
55 |
+
gr.Markdown(
|
56 |
+
"""
|
57 |
+
**Instructions:**
|
58 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
59 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
60 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
61 |
+
---
|
62 |
+
**Disclaimers:**
|
63 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
64 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
65 |
+
"""
|
66 |
+
)
|
67 |
+
|
68 |
+
gr.LoginButton()
|
69 |
+
|
70 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
71 |
+
|
72 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
73 |
+
# Removed max_rows=10 from DataFrame constructor
|
74 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
75 |
+
|
76 |
+
run_button.click(
|
77 |
+
fn=run_and_submit_all,
|
78 |
+
outputs=[status_output, results_table]
|
79 |
+
)
|
80 |
+
|
81 |
+
|
82 |
+
|