Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,127 +1,59 @@
|
|
1 |
-
|
2 |
-
import gradio as gr
|
3 |
-
import requests
|
4 |
-
import pandas as pd
|
5 |
-
from dotenv import load_dotenv
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
from
|
10 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
# --- GAIA-compatible Agent Definition ---
|
18 |
class GaiaAgent:
|
19 |
def __init__(self):
|
20 |
-
|
21 |
-
|
22 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
# Define tools
|
25 |
self.tools = [
|
26 |
-
|
27 |
-
ArxivQueryRun(api_wrapper=ArxivAPIWrapper(top_k_results=1, doc_content_chars_max=250)),
|
28 |
-
WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=250))
|
29 |
]
|
30 |
|
31 |
-
self.agent =
|
32 |
-
|
33 |
-
self.llm,
|
34 |
-
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
35 |
-
handle_parsing_errors=True
|
36 |
-
)
|
37 |
-
|
38 |
-
def __call__(self, question: str) -> str:
|
39 |
-
try:
|
40 |
-
return self.agent.run(question)
|
41 |
-
except Exception as e:
|
42 |
-
return f"[ERROR] {str(e)}"
|
43 |
-
|
44 |
-
# --- Evaluation Logic ---
|
45 |
-
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
46 |
-
space_id = os.getenv("SPACE_ID")
|
47 |
-
|
48 |
-
if profile:
|
49 |
-
username = f"{profile.username}"
|
50 |
-
print(f"User logged in: {username}")
|
51 |
-
else:
|
52 |
-
print("User not logged in.")
|
53 |
-
return "Please Login to Hugging Face with the button.", None
|
54 |
-
|
55 |
-
questions_url = f"{DEFAULT_API_URL}/questions"
|
56 |
-
submit_url = f"{DEFAULT_API_URL}/submit"
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
except Exception as e:
|
71 |
-
return f"Error fetching questions: {e}", None
|
72 |
-
|
73 |
-
results_log = []
|
74 |
-
answers_payload = []
|
75 |
-
for item in questions_data:
|
76 |
-
task_id = item.get("task_id")
|
77 |
-
question_text = item.get("question")
|
78 |
-
if not task_id or question_text is None:
|
79 |
-
continue
|
80 |
-
try:
|
81 |
-
submitted_answer = agent(question_text)
|
82 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
83 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
84 |
-
except Exception as e:
|
85 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
86 |
-
|
87 |
-
if not answers_payload:
|
88 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
89 |
-
|
90 |
-
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
91 |
-
print(f"Submitting answers to: {submit_url}")
|
92 |
-
|
93 |
-
try:
|
94 |
-
response = requests.post(submit_url, json=submission_data, timeout=60)
|
95 |
-
response.raise_for_status()
|
96 |
-
result_data = response.json()
|
97 |
-
final_status = (
|
98 |
-
f"Submission Successful!\n"
|
99 |
-
f"User: {result_data.get('username')}\n"
|
100 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
101 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
102 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
103 |
-
)
|
104 |
-
return final_status, pd.DataFrame(results_log)
|
105 |
-
except Exception as e:
|
106 |
-
return f"Submission Failed: {e}", pd.DataFrame(results_log)
|
107 |
-
|
108 |
-
# --- Gradio UI ---
|
109 |
-
with gr.Blocks() as demo:
|
110 |
-
gr.Markdown("# Basic Agent Evaluation Runner")
|
111 |
-
gr.Markdown("""
|
112 |
-
**Instructions:**
|
113 |
-
1. Modify `GaiaAgent` to implement your logic.
|
114 |
-
2. Log in to your Hugging Face account below.
|
115 |
-
3. Click 'Run Evaluation & Submit All Answers'.
|
116 |
-
""")
|
117 |
-
|
118 |
-
gr.LoginButton()
|
119 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
120 |
-
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
121 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
122 |
|
123 |
-
|
|
|
|
|
124 |
|
125 |
-
if __name__ == "__main__":
|
126 |
-
print("Launching GAIA-compatible agent...")
|
127 |
-
demo.launch(debug=True, share=False)
|
|
|
1 |
+
api_key = "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"
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
import argparse
|
4 |
+
import streamlit as st
|
5 |
+
from langchain.agents import create_tool_calling_agent, AgentExecutor
|
6 |
+
from langchain_core.runnables import Runnable
|
7 |
+
from crewai_tools import ScrapeWebsiteTool
|
8 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
9 |
+
from langchain_community.chat_models import ChatLiteLLM
|
10 |
+
from litellm import completion
|
11 |
+
import importlib
|
12 |
+
|
13 |
+
# Define your custom LLM wrapper class
|
14 |
+
class CustomLLM(ChatLiteLLM):
|
15 |
+
def __init__(self):
|
16 |
+
super().__init__(model="gpt-4")
|
17 |
|
18 |
+
def _call(self, prompt: str, stop=None):
|
19 |
+
response = completion(model="gpt-4", messages=[{"role": "user", "content": prompt}])
|
20 |
+
return response.choices[0].message["content"]
|
21 |
|
22 |
+
# Define your agent class
|
|
|
|
|
23 |
class GaiaAgent:
|
24 |
def __init__(self):
|
25 |
+
self.llm = CustomLLM()
|
26 |
+
|
27 |
+
self.prompt = ChatPromptTemplate.from_messages([
|
28 |
+
("system", "You are a helpful assistant."),
|
29 |
+
MessagesPlaceholder(variable_name="chat_history"),
|
30 |
+
("human", "{input}"),
|
31 |
+
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
32 |
+
])
|
33 |
|
|
|
34 |
self.tools = [
|
35 |
+
ScrapeWebsiteTool()
|
|
|
|
|
36 |
]
|
37 |
|
38 |
+
self.agent: Runnable = create_tool_calling_agent(self.llm, self.tools, self.prompt)
|
39 |
+
self.agent_executor: AgentExecutor = AgentExecutor(agent=self.agent, tools=self.tools, verbose=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
def run(self):
|
42 |
+
st.title("🧠 GAIA-compatible Agent")
|
43 |
+
user_input = st.text_input("Enter your query")
|
44 |
+
if user_input:
|
45 |
+
response = self.agent_executor.invoke({"input": user_input})
|
46 |
+
st.write("Response:", response)
|
47 |
|
48 |
+
# Main CLI-compatible entry point
|
49 |
+
if __name__ == "__main__":
|
50 |
+
parser = argparse.ArgumentParser()
|
51 |
+
parser.add_argument("--import", type=str, required=False, help="Module to import (ignored for static agent)")
|
52 |
+
parser.add_argument("--class", type=str, required=False, help="Class name to instantiate (ignored for static agent)")
|
53 |
+
parser.add_argument("--device", type=str, default="cpu", help="Device type (not used in this agent)")
|
54 |
+
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# Directly instantiate and run the predefined GaiaAgent class
|
57 |
+
agent = GaiaAgent()
|
58 |
+
agent.run()
|
59 |
|
|
|
|
|
|