import streamlit as st from langchain_groq import ChatGroq from langchain_community.utilities import ArxivAPIWrapper, WikipediaAPIWrapper from langchain_community.tools import ArxivQueryRun, WikipediaQueryRun, DuckDuckGoSearchRun from langchain.agents import initialize_agent, AgentType from langchain.callbacks import StreamlitCallbackHandler import os from dotenv import load_dotenv # Used the inbuilt tools of Arxiv and Wikipedia api_wrapper_arxiv = ArxivAPIWrapper(top_k_results=1, doc_content_chars_max=250) arxiv = ArxivQueryRun(api_wrapper=api_wrapper_arxiv) api_wrapper_wiki = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=250) wiki = WikipediaQueryRun(api_wrapper=api_wrapper_wiki) search = DuckDuckGoSearchRun(name="Search") st.title("Langchain - Chat with Search") """ In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app. Try more LangChain 🤝 Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent). """ # Sidebar for settings st.sidebar.title("Settings") api_key = st.sidebar.text_input("Enter your Groq API Key:", type="password") if "messages" not in st.session_state: st.session_state["messages"] = [ {"role":"assistant", "content":"Hi, I am a Chatbot who can search the web. How can I help you ?"} ] for msg in st.session_state.messages: st.chat_message(msg["role"]).write(msg["content"]) if prompt:=st.chat_input(placeholder="What is machine learning ?"): st.session_state.messages.append({"role":"user", "content":prompt}) st.chat_message("user").write(prompt) llm = ChatGroq(groq_api_key=api_key, model_name="Llama3-8b-8192", streaming=True) tools = [search, arxiv, wiki] search_agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, handle_parsing_errors=True) with st.chat_message("assistant"): st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False) response = search_agent.run(st.session_state.messages, callbacks=[st_cb]) st.session_state.messages.append({'role':'assistant', "content":response}) st.write(response)