Spaces:
Sleeping
Sleeping
File size: 12,701 Bytes
fc10172 52cb539 fc10172 52cb539 fc10172 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import gradio as gr
import requests
import json
import re
import time
from typing import List, Dict, Tuple, Optional
from urllib.parse import quote
class GGUFModelFinder:
def __init__(self):
self.popular_gguf_creators = [
"TheBloke",
"bartowski",
"mradermacher",
"microsoft",
"QuantFactory",
"lmstudio-ai",
"huggingface",
"mlabonne",
"NousResearch",
"MaziyarPanahi"
]
self.api_base = "https://huggingface.co/api"
self.headers = {
"User-Agent": "GGUF-Model-Finder/1.0"
}
def clean_model_name(self, model_name: str) -> str:
"""Clean and normalize model name for better searching"""
# Remove common prefixes and suffixes
cleaned = model_name.strip()
# Remove author/organization prefix if present
if "/" in cleaned:
cleaned = cleaned.split("/")[-1]
# Remove common suffixes
suffixes_to_remove = [
"-GGUF", "-gguf", "-GPTQ", "-gptq", "-AWQ", "-awq",
"-HF", "-hf", "-chat", "-instruct", "-base", "-v1",
"-v2", "-v3", "-uncensored", "-finetune"
]
for suffix in suffixes_to_remove:
if cleaned.lower().endswith(suffix.lower()):
cleaned = cleaned[:-len(suffix)]
return cleaned.strip()
def search_models(self, query: str, author: str = None, limit: int = 20) -> List[Dict]:
"""Search for models using HuggingFace API"""
try:
search_url = f"{self.api_base}/models"
params = {
"search": query,
"filter": "gguf",
"limit": limit,
"sort": "downloads"
}
if author:
params["author"] = author
response = requests.get(search_url, params=params, headers=self.headers, timeout=10)
if response.status_code == 200:
return response.json()
else:
return []
except Exception as e:
print(f"Error searching models: {e}")
return []
def search_gguf_variants(self, model_name: str) -> List[Dict]:
"""Search for GGUF variants of a given model"""
cleaned_name = self.clean_model_name(model_name)
all_results = []
# Search with different query variations
search_terms = [
cleaned_name,
f"{cleaned_name} GGUF",
f"{cleaned_name}-GGUF",
f"{cleaned_name}_GGUF"
]
# Search through popular GGUF creators
for creator in self.popular_gguf_creators:
for term in search_terms:
results = self.search_models(term, author=creator, limit=10)
all_results.extend(results)
time.sleep(0.1) # Rate limiting
# Also search generally without author filter
for term in search_terms:
results = self.search_models(term, limit=15)
all_results.extend(results)
time.sleep(0.1)
# Remove duplicates and filter relevant results
seen_ids = set()
filtered_results = []
for model in all_results:
model_id = model.get('id', '')
if model_id not in seen_ids and 'gguf' in model_id.lower():
seen_ids.add(model_id)
# Check if model name is relevant
model_name_clean = self.clean_model_name(model_id)
if self.is_relevant_match(cleaned_name, model_name_clean):
filtered_results.append(model)
# Sort by downloads (descending)
filtered_results.sort(key=lambda x: x.get('downloads', 0), reverse=True)
return filtered_results[:20] # Return top 20 results
def is_relevant_match(self, original: str, candidate: str) -> bool:
"""Check if candidate model is a relevant match for original"""
original_lower = original.lower()
candidate_lower = candidate.lower()
# Direct substring match
if original_lower in candidate_lower or candidate_lower in original_lower:
return True
# Check word overlap
original_words = set(re.findall(r'\w+', original_lower))
candidate_words = set(re.findall(r'\w+', candidate_lower))
# If most words overlap, it's likely a match
if len(original_words) > 0:
overlap_ratio = len(original_words.intersection(candidate_words)) / len(original_words)
return overlap_ratio >= 0.6
return False
def get_model_details(self, model_id: str) -> Dict:
"""Get detailed information about a specific model"""
try:
url = f"{self.api_base}/models/{model_id}"
response = requests.get(url, headers=self.headers, timeout=10)
if response.status_code == 200:
return response.json()
return {}
except Exception as e:
print(f"Error getting model details: {e}")
return {}
def format_model_info(self, model: Dict) -> str:
"""Format model information for display"""
model_id = model.get('id', 'Unknown')
downloads = model.get('downloads', 0)
likes = model.get('likes', 0)
updated = model.get('lastModified', 'Unknown')
# Format the date
if updated != 'Unknown':
try:
from datetime import datetime
date_obj = datetime.fromisoformat(updated.replace('Z', '+00:00'))
updated = date_obj.strftime('%Y-%m-%d')
except:
pass
# Get model size info if available
size_info = ""
if 'siblings' in model:
total_size = 0
file_count = 0
for sibling in model['siblings']:
if sibling.get('rfilename', '').endswith('.gguf'):
file_count += 1
if 'size' in sibling:
total_size += sibling['size']
if total_size > 0:
size_gb = total_size / (1024**3)
size_info = f" | Size: {size_gb:.1f}GB ({file_count} GGUF files)"
model_url = f"https://huggingface.co/{model_id}"
return f"""
**[{model_id}]({model_url})**
- Downloads: {downloads:,} | Likes: {likes} | Updated: {updated}{size_info}
"""
def find_gguf_models(model_name: str, progress=gr.Progress()) -> Tuple[str, str]:
"""Main function to find GGUF models"""
if not model_name.strip():
return "Please enter a model name to search for.", ""
progress(0.1, desc="Initializing search...")
finder = GGUFModelFinder()
progress(0.3, desc="Searching for GGUF variants...")
results = finder.search_gguf_variants(model_name)
progress(0.8, desc="Formatting results...")
if not results:
no_results = f"""
# No GGUF Models Found π
Could not find any GGUF variants for **{model_name}**.
## Suggestions:
1. **Check the spelling** of the model name
2. **Try a simpler name** (e.g., just "llama-2-7b" instead of "meta-llama/Llama-2-7b-chat-hf")
3. **Search manually** on [Hugging Face](https://huggingface.co/models?other=gguf) with the GGUF filter
4. **Check popular GGUF creators**:
- [ReallyFloppyPenguin](https://huggingface.co/ReallyFloppyPenguin)
- [TheBloke](https://huggingface.co/TheBloke)
- [bartowski](https://huggingface.co/bartowski)
- [mradermacher](https://huggingface.co/mradermacher)
- [QuantFactory](https://huggingface.co/QuantFactory)
The model you're looking for might not have been converted to GGUF format yet, or might be available under a different name.
"""
return no_results, ""
# Create main results
results_md = f"""
# GGUF Models Found for "{model_name}" π―
Found **{len(results)}** GGUF variant(s):
"""
for i, model in enumerate(results, 1):
results_md += f"{i}. {finder.format_model_info(model)}\n"
# Create additional info
additional_info = f"""
## π What is GGUF?
GGUF (GPT-Generated Unified Format) is a file format for storing models for inference with GGML and llama.cpp. It's designed to be fast to load and save, and to be extensible.
## π§ How to Use These Models
### With llama.cpp:
```bash
./main -m model.gguf -p "Your prompt here"
```
### With Ollama:
```bash
ollama create mymodel -f Modelfile
ollama run mymodel
```
### With Python (llama-cpp-python):
```python
from llama_cpp import Llama
llm = Llama(model_path="model.gguf")
output = llm("Your prompt here")
```
## π‘ Tips for Choosing a Model
- **Q4_K_M**: Good balance of quality and size
- **Q5_K_M**: Higher quality, larger size
- **Q6_K**: Even higher quality, larger size
- **Q8_0**: Highest quality, largest size
Lower numbers = smaller file size but lower quality
Higher numbers = larger file size but higher quality
## π Popular GGUF Model Creators
The results above are from trusted model quantizers who regularly convert popular models to GGUF format.
"""
progress(1.0, desc="Complete!")
return results_md, additional_info
# Create the Gradio interface
def create_interface():
with gr.Blocks(
title="GGUF Model Finder",
theme=gr.themes.Soft(),
css="""
.container { max-width: 1200px; margin: auto; }
.header { text-align: center; margin: 20px 0; }
.search-box { margin: 20px 0; }
"""
) as iface:
gr.HTML("""
<div class="header">
<h1>π GGUF Model Finder</h1>
<p>Find GGUF (quantized) versions of your favorite language models for local inference</p>
</div>
""")
with gr.Row():
with gr.Column(scale=3):
model_input = gr.Textbox(
label="Model Name",
placeholder="e.g., llama-2-7b, mistral-7b, codellama-34b, deepseek-coder-6.7b",
info="Enter the name of the model you want to find GGUF versions for",
lines=1
)
with gr.Column(scale=1):
search_btn = gr.Button("π Search GGUF Models", variant="primary", size="lg")
gr.HTML("""
<div style="margin: 20px 0; padding: 15px; background-color: #374151; border-radius: 8px;">
<strong>π‘ Quick Examples:</strong><br>
β’ <code>llama-2-7b</code> - Meta's Llama 2 7B model<br>
β’ <code>mistral-7b</code> - Mistral AI's 7B model<br>
β’ <code>codellama-34b</code> - Code Llama 34B model<br>
β’ <code>neural-chat-7b</code> - Intel's Neural Chat model<br>
β’ <code>deepseek-coder</code> - DeepSeek Coder model
</div>
""")
with gr.Row():
with gr.Column(scale=2):
results_output = gr.Markdown(
label="Search Results",
value="Enter a model name above and click 'Search GGUF Models' to find quantized versions.",
height=400
)
with gr.Column(scale=1):
info_output = gr.Markdown(
label="Additional Information",
value="",
height=400
)
# Event handlers
search_btn.click(
fn=find_gguf_models,
inputs=[model_input],
outputs=[results_output, info_output],
show_progress=True
)
model_input.submit(
fn=find_gguf_models,
inputs=[model_input],
outputs=[results_output, info_output],
show_progress=True
)
gr.HTML("""
<div style="margin-top: 30px; text-align: center; color: #666;">
<p>Made with β€οΈ using Gradio | Data from <a href="https://huggingface.co">Hugging Face</a></p>
<p>GGUF format by the <a href="https://github.com/ggerganov/llama.cpp">llama.cpp</a> team</p>
</div>
""")
return iface
if __name__ == "__main__":
# Create and launch the interface
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
) |