Spaces:
Runtime error
Runtime error
create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py for Hugging Face Space: Connecting Meta Llama 3.2 Vision, Segment Anything 2, and Diffusion Model
|
2 |
+
import gradio as gr
|
3 |
+
import spaces # Import the spaces module to use GPU-specific decorators
|
4 |
+
from transformers import pipeline
|
5 |
+
from diffusers import StableDiffusionPipeline
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# Set up Meta Llama 3.2 Vision model
|
9 |
+
llama_vision_model_id = "meta-llama/Llama-3.2-1B-Vision"
|
10 |
+
llama_pipe = pipeline(
|
11 |
+
"image-captioning", # Supports image captioning and image Q&A
|
12 |
+
model=llama_vision_model_id,
|
13 |
+
torch_dtype=torch.bfloat16,
|
14 |
+
device=0, # Force usage of GPU
|
15 |
+
)
|
16 |
+
|
17 |
+
# Set up Meta Segment Anything 2 model
|
18 |
+
segment_model_id = "meta/segment-anything-2"
|
19 |
+
segment_pipe = pipeline(
|
20 |
+
"image-segmentation",
|
21 |
+
model=segment_model_id,
|
22 |
+
device=0, # Force usage of GPU
|
23 |
+
)
|
24 |
+
|
25 |
+
# Set up Stable Diffusion Lite model
|
26 |
+
stable_diffusion_model_id = "CompVis/stable-diffusion-lite"
|
27 |
+
diffusion_pipe = StableDiffusionPipeline.from_pretrained(
|
28 |
+
stable_diffusion_model_id, torch_dtype=torch.float16
|
29 |
+
)
|
30 |
+
diffusion_pipe = diffusion_pipe.to("cuda") # Force usage of GPU
|
31 |
+
|
32 |
+
# Use the GPU decorator for the function that needs GPU access
|
33 |
+
@spaces.GPU(duration=120) # Allocates GPU for a maximum of 120 seconds
|
34 |
+
def process_image(image):
|
35 |
+
# Step 1: Use Llama 3.2 Vision for initial image understanding (captioning)
|
36 |
+
caption_result = llama_pipe(image=image)
|
37 |
+
caption = caption_result[0]['generated_text']
|
38 |
+
|
39 |
+
# Step 2: Segment important parts of the image
|
40 |
+
segmented_result = segment_pipe(image=image)
|
41 |
+
segments = segmented_result["segments"]
|
42 |
+
|
43 |
+
# Step 3: Modify segmented image using Diffusion model
|
44 |
+
# Here, we modify based on the caption result and segmented area
|
45 |
+
output_image = diffusion_pipe(prompt=f"Modify the {caption}", image=image).images[0]
|
46 |
+
|
47 |
+
return output_image
|
48 |
+
|
49 |
+
# Create Gradio interface
|
50 |
+
interface = gr.Interface(
|
51 |
+
fn=process_image,
|
52 |
+
inputs=gr.Image(type="pil"),
|
53 |
+
outputs="image",
|
54 |
+
live=True, # Allow for dynamic updates if necessary
|
55 |
+
allow_flagging="never", # Disallow flagging to keep interactions light
|
56 |
+
title="Image Processor: Vision, Segmentation, and Modification",
|
57 |
+
description="Upload an image to generate a caption, segment important parts, and modify the image using Stable Diffusion."
|
58 |
+
)
|
59 |
+
|
60 |
+
# Launch the app
|
61 |
+
interface.launch()
|