Update app.py
Browse files
app.py
CHANGED
|
@@ -11,6 +11,25 @@ from sentence_transformers import SentenceTransformer
|
|
| 11 |
MODEL_BASE = "Qwen/Qwen2.5-1.5B-Instruct"
|
| 12 |
DOCS_DIR = "docs"
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
print("Loading tokenizer…")
|
| 15 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_BASE)
|
| 16 |
|
|
@@ -34,24 +53,11 @@ def load_docs():
|
|
| 34 |
pass
|
| 35 |
return texts
|
| 36 |
|
| 37 |
-
def split_text(text: str, chunk_size: int = 800, overlap: int = 100):
|
| 38 |
-
chunks = []
|
| 39 |
-
start = 0
|
| 40 |
-
n = len(text)
|
| 41 |
-
while start < n:
|
| 42 |
-
end = start + chunk_size
|
| 43 |
-
chunk = text[start:end]
|
| 44 |
-
chunks.append(chunk.strip())
|
| 45 |
-
start = end - overlap
|
| 46 |
-
return chunks
|
| 47 |
-
|
| 48 |
print("Loading RAG docs…")
|
| 49 |
-
raw_docs = load_docs()
|
| 50 |
-
|
| 51 |
-
# chunk'lanmış dokümanlar
|
| 52 |
-
docs: list[str] = []
|
| 53 |
for d in raw_docs:
|
| 54 |
-
docs.extend(split_text(d))
|
| 55 |
|
| 56 |
if docs:
|
| 57 |
embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
|
@@ -65,9 +71,10 @@ else:
|
|
| 65 |
print("RAG: no docs found, context will be empty.")
|
| 66 |
|
| 67 |
def retrieve_context(query: str, k: int = 3) -> str:
|
| 68 |
-
if index is None or embed_model is None:
|
| 69 |
return ""
|
| 70 |
q_emb = embed_model.encode([query], convert_to_numpy=True)
|
|
|
|
| 71 |
D, I = index.search(q_emb, k)
|
| 72 |
parts = []
|
| 73 |
for i in I[0]:
|
|
@@ -122,7 +129,7 @@ chatbot = gr.ChatInterface(
|
|
| 122 |
respond,
|
| 123 |
type="messages",
|
| 124 |
additional_inputs=[
|
| 125 |
-
gr.Textbox("
|
| 126 |
gr.Slider(1, 4096, 1024, step=1, label="Max tokens"),
|
| 127 |
gr.Slider(0.1, 2.0, 0.7, step=0.1, label="Temperature"),
|
| 128 |
gr.Slider(0.1, 1.0, 0.95, step=0.05, label="Top-p"),
|
|
|
|
| 11 |
MODEL_BASE = "Qwen/Qwen2.5-1.5B-Instruct"
|
| 12 |
DOCS_DIR = "docs"
|
| 13 |
|
| 14 |
+
# ---------- Metni parçalara bölme (RAG chunking) ----------
|
| 15 |
+
def split_text(text: str, chunk_size: int = 800, overlap: int = 100):
|
| 16 |
+
chunks = []
|
| 17 |
+
start = 0
|
| 18 |
+
length = len(text)
|
| 19 |
+
|
| 20 |
+
while start < length:
|
| 21 |
+
end = min(start + chunk_size, length)
|
| 22 |
+
chunk = text[start:end].strip()
|
| 23 |
+
if chunk:
|
| 24 |
+
chunks.append(chunk)
|
| 25 |
+
start = end - overlap
|
| 26 |
+
if start < 0:
|
| 27 |
+
start = 0
|
| 28 |
+
|
| 29 |
+
return chunks
|
| 30 |
+
# ---------------------------------------------------------
|
| 31 |
+
|
| 32 |
+
|
| 33 |
print("Loading tokenizer…")
|
| 34 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_BASE)
|
| 35 |
|
|
|
|
| 53 |
pass
|
| 54 |
return texts
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
print("Loading RAG docs…")
|
| 57 |
+
raw_docs = load_docs() # tam dokümanlar
|
| 58 |
+
docs = [] # chunk'lar buraya
|
|
|
|
|
|
|
| 59 |
for d in raw_docs:
|
| 60 |
+
docs.extend(split_text(d)) # her dokümanı parçalara böl
|
| 61 |
|
| 62 |
if docs:
|
| 63 |
embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
|
|
|
| 71 |
print("RAG: no docs found, context will be empty.")
|
| 72 |
|
| 73 |
def retrieve_context(query: str, k: int = 3) -> str:
|
| 74 |
+
if index is None or embed_model is None or not docs:
|
| 75 |
return ""
|
| 76 |
q_emb = embed_model.encode([query], convert_to_numpy=True)
|
| 77 |
+
k = min(k, len(docs))
|
| 78 |
D, I = index.search(q_emb, k)
|
| 79 |
parts = []
|
| 80 |
for i in I[0]:
|
|
|
|
| 129 |
respond,
|
| 130 |
type="messages",
|
| 131 |
additional_inputs=[
|
| 132 |
+
gr.Textbox("You are a scientific assistant.", label="System"),
|
| 133 |
gr.Slider(1, 4096, 1024, step=1, label="Max tokens"),
|
| 134 |
gr.Slider(0.1, 2.0, 0.7, step=0.1, label="Temperature"),
|
| 135 |
gr.Slider(0.1, 1.0, 0.95, step=0.05, label="Top-p"),
|