Spaces:
Sleeping
Sleeping
Updated app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import gradio
|
2 |
import pandas as pd
|
3 |
import psycopg2
|
@@ -14,16 +15,20 @@ nltk.download('punkt')
|
|
14 |
nltk.download('averaged_perceptron_tagger')
|
15 |
nltk.download('stopwords')
|
16 |
|
|
|
17 |
def get_paragraph(row, index):
|
18 |
ans = ''
|
19 |
for x in row[index]:
|
20 |
ans = ans + ' ' + x.lower()
|
21 |
return ans
|
22 |
|
|
|
23 |
def remove_accents(text):
|
24 |
-
text = unicodedata.normalize('NFKD', text).encode(
|
|
|
25 |
return text
|
26 |
|
|
|
27 |
def get_clean_text(row, index):
|
28 |
if not isinstance(row[index], str):
|
29 |
return ''
|
@@ -38,22 +43,23 @@ def get_clean_text(row, index):
|
|
38 |
clean_text += ' ' + word
|
39 |
return clean_text
|
40 |
|
|
|
41 |
def combine(row, indices):
|
42 |
ans = ''
|
43 |
for i in indices:
|
44 |
ans = ans + ' ' + row[i]
|
45 |
return ans
|
46 |
|
|
|
47 |
stop_words = set(stopwords.words('english'))
|
48 |
query = "SELECT * FROM base_springerdata"
|
49 |
|
50 |
-
CACHE={}
|
51 |
-
SQL_KEY='sql'
|
52 |
-
JOURNAL_COMPLETE='journal_complete'
|
53 |
-
JOURNAL_PARTIAL='journal_partial'
|
54 |
-
VECTORIZER='vectorizer'
|
55 |
-
JOURNAL_TFIDF='journal_tfidf'
|
56 |
-
import os
|
57 |
|
58 |
# Access the secrets
|
59 |
HOST = os.getenv('DATABASE_HOST')
|
@@ -61,131 +67,149 @@ DATABASE = os.getenv('DATABASE_NAME')
|
|
61 |
USER = os.getenv('DATABASE_USER')
|
62 |
PASSWORD = os.getenv('DATABASE_PASSWORD')
|
63 |
# load sql
|
|
|
|
|
64 |
def load_sql_data(query):
|
65 |
if SQL_KEY in CACHE:
|
66 |
return CACHE[SQL_KEY]
|
67 |
conn = psycopg2.connect(
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
sslmode="require"
|
73 |
)
|
74 |
-
df =pd.read_sql_query(query, conn)
|
75 |
df = df.drop(['item_doi'], axis=1)
|
|
|
|
|
76 |
conn.close()
|
77 |
CACHE[SQL_KEY] = df
|
78 |
return df
|
|
|
|
|
79 |
# main_df
|
80 |
main_df = load_sql_data(query)
|
81 |
-
# Close the database connection
|
82 |
|
83 |
|
84 |
# load journal_df
|
85 |
-
|
86 |
def get_journal_df(df):
|
87 |
if JOURNAL_PARTIAL in CACHE:
|
88 |
return CACHE[JOURNAL_PARTIAL]
|
89 |
-
journal_art = df.groupby('publication_title')['item_title'].apply(
|
|
|
90 |
journal_art.set_index(['publication_title'], inplace=True)
|
91 |
|
92 |
-
journal_auth = df.groupby('publication_title')['authors'].apply(
|
|
|
93 |
journal_auth.set_index('publication_title', inplace=True)
|
94 |
|
95 |
-
journal_key = df.drop_duplicates(
|
96 |
-
|
|
|
|
|
97 |
journal_key.set_index(['publication_title'], inplace=True)
|
98 |
|
99 |
journal_main = journal_art.join([journal_key, journal_auth])
|
100 |
print('journal_main intial')
|
101 |
journal_main.reset_index(inplace=True)
|
102 |
-
journal_main['Articles'] = journal_main.apply(
|
103 |
-
|
104 |
-
journal_main['
|
105 |
-
|
106 |
-
journal_main['
|
107 |
-
|
108 |
-
journal_main['
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
return journal_main
|
112 |
|
113 |
-
|
114 |
-
print('journal_main processed')
|
115 |
# Journal Dataframe
|
|
|
|
|
116 |
|
117 |
-
# load tfidfs
|
118 |
|
|
|
119 |
def get_tfidfs(journal_main):
|
120 |
if VECTORIZER and JOURNAL_TFIDF in CACHE:
|
121 |
-
return CACHE[VECTORIZER],CACHE[JOURNAL_TFIDF]
|
122 |
vectorizer = TfidfVectorizer(decode_error='ignore', strip_accents='ascii')
|
123 |
journal_tfidf_matrix = vectorizer.fit_transform(journal_main['Tags'])
|
124 |
-
CACHE[VECTORIZER]=vectorizer
|
125 |
-
CACHE[JOURNAL_TFIDF]=journal_tfidf_matrix
|
126 |
-
return vectorizer,journal_tfidf_matrix
|
127 |
|
128 |
-
|
|
|
129 |
print('tfids and vectorizer for journals completed')
|
130 |
|
|
|
131 |
def get_article_df(row):
|
132 |
-
article = main_df.loc[main_df['publication_title'] ==
|
133 |
-
|
|
|
|
|
134 |
article['authors'] = article.apply(get_clean_text, index='authors', axis=1)
|
135 |
article['Tokenized'] = article['item_title'].apply(word_tokenize)
|
136 |
article['Tagged'] = article['Tokenized'].apply(pos_tag)
|
137 |
article['Tags'] = article['Tagged'].apply(lambda x: [word for word, tag in x if
|
138 |
tag.startswith('NN') or tag.startswith('JJ') and word.lower() not in stop_words])
|
139 |
article['Tags'] = article.apply(get_paragraph, index='Tags', axis=1)
|
140 |
-
article['Tags'] = article.apply(
|
141 |
-
|
|
|
|
|
142 |
article.reset_index(inplace=True)
|
143 |
article.set_index('index', inplace=True)
|
144 |
return article
|
145 |
|
146 |
|
147 |
-
|
148 |
def get_vectorizer(row):
|
149 |
vectorizer = TfidfVectorizer(decode_error='ignore', strip_accents='ascii')
|
150 |
return vectorizer
|
151 |
|
152 |
|
153 |
def get_tfidf_matrix(row):
|
154 |
-
tfidf_matrix = row['article_vectorizer'].fit_transform(
|
|
|
155 |
return tfidf_matrix
|
156 |
|
|
|
157 |
def article_preprocessing(df):
|
158 |
if JOURNAL_COMPLETE in CACHE:
|
159 |
return CACHE[JOURNAL_COMPLETE]
|
160 |
df['article_df'] = df.apply(get_article_df, axis=1)
|
161 |
df['article_vectorizer'] = df.apply(get_vectorizer, axis=1)
|
162 |
df['article_matrix'] = df.apply(get_tfidf_matrix, axis=1)
|
163 |
-
CACHE[JOURNAL_COMPLETE]=df
|
164 |
return df
|
165 |
|
166 |
-
journal_main=article_preprocessing(journal_main)
|
167 |
-
print('done')
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
|
|
|
|
|
177 |
|
178 |
|
179 |
-
#
|
180 |
journal_threshold = 4
|
181 |
|
|
|
182 |
def get_journal_index(user_input):
|
183 |
user_tfidf = vectorizer.transform([user_input])
|
184 |
-
cosine_similarities = cosine_similarity(
|
|
|
185 |
indices = cosine_similarities.argsort()[::-1]
|
186 |
-
top_recommendations = [i for i in indices if cosine_similarities[i] > 0][:min(
|
|
|
187 |
return top_recommendations
|
188 |
|
|
|
189 |
article_threshold = 10
|
190 |
|
191 |
|
@@ -193,8 +217,10 @@ def get_article_recommendations(user_input):
|
|
193 |
recommended_journals = get_journal_index(user_input)
|
194 |
recommendations = []
|
195 |
for journal_id in recommended_journals:
|
196 |
-
user_tfidf = journal_main['article_vectorizer'][journal_id].transform([
|
197 |
-
|
|
|
|
|
198 |
indices = cosine_similarities.argsort()[::-1]
|
199 |
top_recommendation_articles = [(cosine_similarities[i], i, journal_id) for i in indices if
|
200 |
cosine_similarities[i] > 0][:min(article_threshold, len(indices))]
|
@@ -218,18 +244,18 @@ def get_links(user_input):
|
|
218 |
return links
|
219 |
|
220 |
|
221 |
-
|
222 |
gradio_interface = gradio.Interface(
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
|
|
233 |
)
|
234 |
|
235 |
-
gradio_interface.launch()
|
|
|
1 |
+
import os
|
2 |
import gradio
|
3 |
import pandas as pd
|
4 |
import psycopg2
|
|
|
15 |
nltk.download('averaged_perceptron_tagger')
|
16 |
nltk.download('stopwords')
|
17 |
|
18 |
+
|
19 |
def get_paragraph(row, index):
|
20 |
ans = ''
|
21 |
for x in row[index]:
|
22 |
ans = ans + ' ' + x.lower()
|
23 |
return ans
|
24 |
|
25 |
+
|
26 |
def remove_accents(text):
|
27 |
+
text = unicodedata.normalize('NFKD', text).encode(
|
28 |
+
'ASCII', 'ignore').decode('utf-8')
|
29 |
return text
|
30 |
|
31 |
+
|
32 |
def get_clean_text(row, index):
|
33 |
if not isinstance(row[index], str):
|
34 |
return ''
|
|
|
43 |
clean_text += ' ' + word
|
44 |
return clean_text
|
45 |
|
46 |
+
|
47 |
def combine(row, indices):
|
48 |
ans = ''
|
49 |
for i in indices:
|
50 |
ans = ans + ' ' + row[i]
|
51 |
return ans
|
52 |
|
53 |
+
|
54 |
stop_words = set(stopwords.words('english'))
|
55 |
query = "SELECT * FROM base_springerdata"
|
56 |
|
57 |
+
CACHE = {}
|
58 |
+
SQL_KEY = 'sql'
|
59 |
+
JOURNAL_COMPLETE = 'journal_complete'
|
60 |
+
JOURNAL_PARTIAL = 'journal_partial'
|
61 |
+
VECTORIZER = 'vectorizer'
|
62 |
+
JOURNAL_TFIDF = 'journal_tfidf'
|
|
|
63 |
|
64 |
# Access the secrets
|
65 |
HOST = os.getenv('DATABASE_HOST')
|
|
|
67 |
USER = os.getenv('DATABASE_USER')
|
68 |
PASSWORD = os.getenv('DATABASE_PASSWORD')
|
69 |
# load sql
|
70 |
+
|
71 |
+
|
72 |
def load_sql_data(query):
|
73 |
if SQL_KEY in CACHE:
|
74 |
return CACHE[SQL_KEY]
|
75 |
conn = psycopg2.connect(
|
76 |
+
host=HOST,
|
77 |
+
database=DATABASE,
|
78 |
+
user=USER,
|
79 |
+
password=PASSWORD
|
|
|
80 |
)
|
81 |
+
df = pd.read_sql_query(query, conn)
|
82 |
df = df.drop(['item_doi'], axis=1)
|
83 |
+
|
84 |
+
# Close the database connection
|
85 |
conn.close()
|
86 |
CACHE[SQL_KEY] = df
|
87 |
return df
|
88 |
+
|
89 |
+
|
90 |
# main_df
|
91 |
main_df = load_sql_data(query)
|
|
|
92 |
|
93 |
|
94 |
# load journal_df
|
|
|
95 |
def get_journal_df(df):
|
96 |
if JOURNAL_PARTIAL in CACHE:
|
97 |
return CACHE[JOURNAL_PARTIAL]
|
98 |
+
journal_art = df.groupby('publication_title')['item_title'].apply(
|
99 |
+
list).reset_index(name='Articles')
|
100 |
journal_art.set_index(['publication_title'], inplace=True)
|
101 |
|
102 |
+
journal_auth = df.groupby('publication_title')['authors'].apply(
|
103 |
+
list).reset_index(name='authors')
|
104 |
journal_auth.set_index('publication_title', inplace=True)
|
105 |
|
106 |
+
journal_key = df.drop_duplicates(
|
107 |
+
subset=["publication_title", "keywords"], keep='first')
|
108 |
+
journal_key = journal_key.drop(
|
109 |
+
['item_title', 'authors', 'publication_year', 'url'], axis=1)
|
110 |
journal_key.set_index(['publication_title'], inplace=True)
|
111 |
|
112 |
journal_main = journal_art.join([journal_key, journal_auth])
|
113 |
print('journal_main intial')
|
114 |
journal_main.reset_index(inplace=True)
|
115 |
+
journal_main['Articles'] = journal_main.apply(
|
116 |
+
get_paragraph, index='Articles', axis=1)
|
117 |
+
journal_main['Articles'] = journal_main.apply(
|
118 |
+
get_clean_text, index='Articles', axis=1)
|
119 |
+
journal_main['authors'] = journal_main.apply(
|
120 |
+
get_paragraph, index='authors', axis=1)
|
121 |
+
journal_main['authors'] = journal_main.apply(
|
122 |
+
get_clean_text, index='authors', axis=1)
|
123 |
+
journal_main['keywords'] = journal_main.apply(
|
124 |
+
get_clean_text, index='keywords', axis=1)
|
125 |
+
|
126 |
+
journal_main['Tags'] = journal_main.apply(
|
127 |
+
combine, indices=['keywords', 'Articles', 'authors'], axis=1)
|
128 |
+
journal_main['Tags'] = journal_main.apply(
|
129 |
+
get_clean_text, index='Tags', axis=1)
|
130 |
+
CACHE[JOURNAL_PARTIAL] = journal_main
|
131 |
return journal_main
|
132 |
|
133 |
+
|
|
|
134 |
# Journal Dataframe
|
135 |
+
journal_main = get_journal_df(main_df)
|
136 |
+
print('journal_main processed')
|
137 |
|
|
|
138 |
|
139 |
+
# load tfidfs
|
140 |
def get_tfidfs(journal_main):
|
141 |
if VECTORIZER and JOURNAL_TFIDF in CACHE:
|
142 |
+
return CACHE[VECTORIZER], CACHE[JOURNAL_TFIDF]
|
143 |
vectorizer = TfidfVectorizer(decode_error='ignore', strip_accents='ascii')
|
144 |
journal_tfidf_matrix = vectorizer.fit_transform(journal_main['Tags'])
|
145 |
+
CACHE[VECTORIZER] = vectorizer
|
146 |
+
CACHE[JOURNAL_TFIDF] = journal_tfidf_matrix
|
147 |
+
return vectorizer, journal_tfidf_matrix
|
148 |
|
149 |
+
|
150 |
+
vectorizer, journal_tfidf_matrix = get_tfidfs(journal_main)
|
151 |
print('tfids and vectorizer for journals completed')
|
152 |
|
153 |
+
|
154 |
def get_article_df(row):
|
155 |
+
article = main_df.loc[main_df['publication_title'] ==
|
156 |
+
journal_main['publication_title'][row.name]].copy()
|
157 |
+
article['item_title'] = article.apply(
|
158 |
+
get_clean_text, index='item_title', axis=1)
|
159 |
article['authors'] = article.apply(get_clean_text, index='authors', axis=1)
|
160 |
article['Tokenized'] = article['item_title'].apply(word_tokenize)
|
161 |
article['Tagged'] = article['Tokenized'].apply(pos_tag)
|
162 |
article['Tags'] = article['Tagged'].apply(lambda x: [word for word, tag in x if
|
163 |
tag.startswith('NN') or tag.startswith('JJ') and word.lower() not in stop_words])
|
164 |
article['Tags'] = article.apply(get_paragraph, index='Tags', axis=1)
|
165 |
+
article['Tags'] = article.apply(
|
166 |
+
lambda x: x['Tags'] + ' ' + x['authors'] + ' ' + str(x['publication_year']), axis=1)
|
167 |
+
article = article.drop(['keywords', 'publication_title',
|
168 |
+
'Tokenized', 'Tagged', 'authors', 'publication_year'], axis=1)
|
169 |
article.reset_index(inplace=True)
|
170 |
article.set_index('index', inplace=True)
|
171 |
return article
|
172 |
|
173 |
|
|
|
174 |
def get_vectorizer(row):
|
175 |
vectorizer = TfidfVectorizer(decode_error='ignore', strip_accents='ascii')
|
176 |
return vectorizer
|
177 |
|
178 |
|
179 |
def get_tfidf_matrix(row):
|
180 |
+
tfidf_matrix = row['article_vectorizer'].fit_transform(
|
181 |
+
row['article_df']['Tags'])
|
182 |
return tfidf_matrix
|
183 |
|
184 |
+
|
185 |
def article_preprocessing(df):
|
186 |
if JOURNAL_COMPLETE in CACHE:
|
187 |
return CACHE[JOURNAL_COMPLETE]
|
188 |
df['article_df'] = df.apply(get_article_df, axis=1)
|
189 |
df['article_vectorizer'] = df.apply(get_vectorizer, axis=1)
|
190 |
df['article_matrix'] = df.apply(get_tfidf_matrix, axis=1)
|
191 |
+
CACHE[JOURNAL_COMPLETE] = df
|
192 |
return df
|
193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
+
journal_main = article_preprocessing(journal_main)
|
196 |
+
print('done')
|
197 |
|
198 |
|
199 |
+
# prediction
|
200 |
journal_threshold = 4
|
201 |
|
202 |
+
|
203 |
def get_journal_index(user_input):
|
204 |
user_tfidf = vectorizer.transform([user_input])
|
205 |
+
cosine_similarities = cosine_similarity(
|
206 |
+
user_tfidf, journal_tfidf_matrix).flatten()
|
207 |
indices = cosine_similarities.argsort()[::-1]
|
208 |
+
top_recommendations = [i for i in indices if cosine_similarities[i] > 0][:min(
|
209 |
+
journal_threshold, len(indices))]
|
210 |
return top_recommendations
|
211 |
|
212 |
+
|
213 |
article_threshold = 10
|
214 |
|
215 |
|
|
|
217 |
recommended_journals = get_journal_index(user_input)
|
218 |
recommendations = []
|
219 |
for journal_id in recommended_journals:
|
220 |
+
user_tfidf = journal_main['article_vectorizer'][journal_id].transform([
|
221 |
+
user_input])
|
222 |
+
cosine_similarities = cosine_similarity(
|
223 |
+
user_tfidf, journal_main['article_matrix'][journal_id]).flatten()
|
224 |
indices = cosine_similarities.argsort()[::-1]
|
225 |
top_recommendation_articles = [(cosine_similarities[i], i, journal_id) for i in indices if
|
226 |
cosine_similarities[i] > 0][:min(article_threshold, len(indices))]
|
|
|
244 |
return links
|
245 |
|
246 |
|
|
|
247 |
gradio_interface = gradio.Interface(
|
248 |
+
fn=get_links,
|
249 |
+
inputs="text",
|
250 |
+
outputs=gradio.outputs.JSON(),
|
251 |
+
examples=[
|
252 |
+
["AI"],
|
253 |
+
["Biochemicals"],
|
254 |
+
["Rocket Science"]
|
255 |
+
],
|
256 |
+
title="Sprinkler Article Generator API",
|
257 |
+
description="This is a AI powered REST API with Gradio and Huggingface Spaces – for free! Based on [this article](https://www.tomsoderlund.com/ai/building-ai-powered-rest-api). See the **Use via API** link at the bottom of this page.",
|
258 |
+
article="© ScholarSync 2023"
|
259 |
)
|
260 |
|
261 |
+
gradio_interface.launch(share=True)
|