Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -10,12 +10,14 @@ from nltk.corpus import stopwords
|
|
10 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
11 |
from sklearn.metrics.pairwise import cosine_similarity
|
12 |
import unicodedata
|
|
|
13 |
|
14 |
nltk.download('punkt')
|
15 |
nltk.download('averaged_perceptron_tagger')
|
16 |
nltk.download('stopwords')
|
17 |
|
18 |
|
|
|
19 |
def get_paragraph(row, index):
|
20 |
ans = ''
|
21 |
for x in row[index]:
|
@@ -237,33 +239,52 @@ def get_article_recommendations(user_input):
|
|
237 |
return recommendations
|
238 |
|
239 |
|
240 |
-
def
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
return links
|
253 |
-
|
254 |
-
|
255 |
-
def validation(user_input):
|
256 |
-
user_words = set(user_input.lower().split())
|
257 |
-
if any(word not in stop_words for word in user_words):
|
258 |
-
return "valid"
|
259 |
else:
|
260 |
-
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
validation_interface = gradio.Interface(
|
264 |
fn=validation,
|
265 |
inputs="text",
|
266 |
-
outputs=gradio.outputs.
|
267 |
title="Validation API - Testing API of ScholarSync",
|
268 |
description="API to validate user input"
|
269 |
)
|
|
|
10 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
11 |
from sklearn.metrics.pairwise import cosine_similarity
|
12 |
import unicodedata
|
13 |
+
import json
|
14 |
|
15 |
nltk.download('punkt')
|
16 |
nltk.download('averaged_perceptron_tagger')
|
17 |
nltk.download('stopwords')
|
18 |
|
19 |
|
20 |
+
|
21 |
def get_paragraph(row, index):
|
22 |
ans = ''
|
23 |
for x in row[index]:
|
|
|
239 |
return recommendations
|
240 |
|
241 |
|
242 |
+
def validation(text):
|
243 |
+
words = word_tokenize(text)
|
244 |
+
# Perform part-of-speech tagging
|
245 |
+
tagged_words = pos_tag(words)
|
246 |
+
# Check if any adjective or noun is present
|
247 |
+
adjectives = [word for word, pos in tagged_words if pos.startswith('JJ')]
|
248 |
+
nouns = [word for word, pos in tagged_words if pos.startswith('NN')]
|
249 |
+
|
250 |
+
result = {}
|
251 |
+
|
252 |
+
if not adjectives and not nouns:
|
253 |
+
result['validation'] = 'invalid'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
else:
|
255 |
+
adjective_str = ' '.join(adjectives)
|
256 |
+
noun_str = ' '.join(nouns)
|
257 |
+
combined_sentence = f"{adjective_str} {noun_str}"
|
258 |
+
result['validation'] = 'valid'
|
259 |
+
result['sentence'] = combined_sentence
|
260 |
+
|
261 |
+
return json.dumps(result, indent=4)
|
262 |
+
|
263 |
+
|
264 |
+
def get_links(user_input):
|
265 |
+
check=validation(user_input)
|
266 |
+
if check['validation'] == 'valid':
|
267 |
+
recommendations = get_article_recommendations(check['sentence'])
|
268 |
+
links = []
|
269 |
+
for article in recommendations:
|
270 |
+
cosine_similarity, article_id, journal_id = article
|
271 |
+
link = {
|
272 |
+
"title": journal_main['article_df'][journal_id].iloc[article_id, 0],
|
273 |
+
"url": journal_main['article_df'][journal_id].iloc[article_id, 1],
|
274 |
+
"article_id": int(article_id),
|
275 |
+
"journal_id": int(journal_id)
|
276 |
+
}
|
277 |
+
links.append(link)
|
278 |
+
return links
|
279 |
+
else:
|
280 |
+
return []
|
281 |
+
|
282 |
+
|
283 |
|
284 |
validation_interface = gradio.Interface(
|
285 |
fn=validation,
|
286 |
inputs="text",
|
287 |
+
outputs=gradio.outputs.JSON(),
|
288 |
title="Validation API - Testing API of ScholarSync",
|
289 |
description="API to validate user input"
|
290 |
)
|