Spaces:
Running
Running
File size: 9,410 Bytes
1167820 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import os
import re
import gc
import torch
import gradio as gr
import numpy as np
import faiss
import nltk
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from transformers import (
MarianMTModel,
MarianTokenizer,
AutoTokenizer,
AutoModelForSeq2SeqLM,
pipeline,
)
from sentence_transformers import SentenceTransformer
nltk.download("punkt_tab")
load_dotenv()
device = "cuda" if torch.cuda.is_available() else "cpu"
# Embeddings & QA
embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
# Translation models:
# English -> Hindi (fine-tuned Marian model; used for summary -> Hindi)
en_hi_model_name = "saved_model_nlp"
translator_en_hi_model = MarianMTModel.from_pretrained(en_hi_model_name).to(device)
translator_en_hi_tokenizer = MarianTokenizer.from_pretrained(en_hi_model_name)
# Hindi -> English (Helsinki model to convert input Hindi PDF to English)
hi_en_model_name = "Helsinki-NLP/opus-mt-hi-en"
translator_hi_en_model = MarianMTModel.from_pretrained(hi_en_model_name).to(device)
translator_hi_en_tokenizer = MarianTokenizer.from_pretrained(hi_en_model_name)
# BART Summarizer
bart_model_name = "pszemraj/led-large-book-summary"
bart_tokenizer = AutoTokenizer.from_pretrained(bart_model_name)
bart_model = AutoModelForSeq2SeqLM.from_pretrained(bart_model_name).to(device)
pdf_text = ""
text_chunks = []
index = None
# QA
def extract_text_from_pdf(file_path):
reader = PdfReader(file_path)
text = ""
for page in reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
doc_is_hindi = is_devanagari(text)
if doc_is_hindi:
# split into Hindi sentences
hindi_sentences = sentence_tokenize_hindi(text)
# translate in batches to English
english_sentences = batch_translate_hi_to_en(hindi_sentences)
english_source_text = " ".join(english_sentences)
else:
english_source_text = text
return english_source_text
def chunk_text(text, chunk_size=500, overlap=100):
chunks = []
start = 0
while start < len(text):
end = min(start + chunk_size, len(text))
chunk = text[start:end]
chunks.append(chunk)
start += chunk_size - overlap
return chunks
def build_faiss_index(chunks, embedder):
embeddings = embedder.encode(chunks)
dim = embeddings.shape[1]
index = faiss.IndexFlatL2(dim)
index.add(np.array(embeddings, dtype=np.float32))
return index, np.array(embeddings, dtype=np.float32)
def is_devanagari(text: str, threshold: float = 0.02) -> bool:
"""
Percentage of Devanagari characters in text.
If above threshold -> consider the document as Hindi/Devanagari.
"""
if not text:
return False
devanagari_count = len(re.findall(r"[\u0900-\u097F]", text))
return (devanagari_count / max(1, len(text))) > threshold
def sentence_tokenize_english(text: str):
return nltk.sent_tokenize(text)
def sentence_tokenize_hindi(text: str):
parts = re.split(r"[ΰ₯€\.\?\!]\s+", text)
parts = [p.strip() for p in parts if p and p.strip()]
return parts
def batch_translate_hi_to_en(sentences, batch_size=16):
"""
Translate a list of Hindi sentences -> English using Helsinki model in batches.
Returns list of translated strings in same order.
"""
out = []
for i in range(0, len(sentences), batch_size):
batch = sentences[i : i + batch_size]
toks = translator_hi_en_tokenizer(batch, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
with torch.no_grad():
gen = translator_hi_en_model.generate(**toks, max_length=512)
decoded = [translator_hi_en_tokenizer.decode(g, skip_special_tokens=True) for g in gen]
out.extend(decoded)
return out
def batch_translate_en_to_hi(sentences, batch_size=16):
"""
Translate a list of English sentences -> Hindi using your saved_model_nlp (Marian).
"""
out = []
for i in range(0, len(sentences), batch_size):
batch = sentences[i : i + batch_size]
toks = translator_en_hi_tokenizer(batch, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
with torch.no_grad():
gen = translator_en_hi_model.generate(**toks, max_length=512)
decoded = [translator_en_hi_tokenizer.decode(g, skip_special_tokens=True) for g in gen]
out.extend(decoded)
return out
# Upload + Process PDF(QA)
def upload_pdf(file):
global pdf_text, text_chunks, index
pdf_text = extract_text_from_pdf(file.name)
text_chunks = chunk_text(pdf_text)
if len(text_chunks) == 0:
return "β Empty PDF or could not extract text."
index, _ = build_faiss_index(text_chunks, embedder)
return "β
PDF uploaded and processed successfully! Ready for questions."
# Answer Questions
def get_answer(question):
global pdf_text, text_chunks, index
if index is None:
return "β Please upload a PDF first."
q_emb = embedder.encode([question])
D, I = index.search(np.array(q_emb, dtype=np.float32), k=3)
relevant_text = " ".join([text_chunks[i] for i in I[0]])
result = qa_pipeline(question=question, context=relevant_text)
answer = result.get("answer", "")
confidence = round(result.get("score", 0.0), 3)
return (
f"**Answer:** {answer}\n\n"
f"**Confidence:** {confidence}\n\n"
f"**Context Extract:**\n{relevant_text[:500]}..."
)
# BART Summarization(English)
def bart_summarize(text):
inputs = bart_tokenizer(
text,
return_tensors="pt",
truncation=True,
max_length=4096,
).to(device)
bart_model.config.max_length = 4096
with torch.no_grad():
summary_ids = bart_model.generate(
inputs["input_ids"],
max_length=2000,
min_length=80,
num_beams=4,
length_penalty=2.0,
)
return bart_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
def summarize_pdf_with_options(pdf_file, output_lang="english"):
"""
output_lang: "english" or "hindi"
"""
try:
# Extract text
reader = PdfReader(pdf_file)
text = ""
for page in reader.pages[:10]: # first 10 pages
text += page.extract_text() or ""
if not text.strip():
return "β Could not extract text from the PDF."
# Detect Devanagari(Hindi)
doc_is_hindi = is_devanagari(text)
# If Hindi document->translate whole doc to English sentence-wise first
if doc_is_hindi:
# split into Hindi sentences
hindi_sentences = sentence_tokenize_hindi(text)
# translate in batches to English
english_sentences = batch_translate_hi_to_en(hindi_sentences)
# join for summarization
english_source_text = " ".join(english_sentences)
else:
english_source_text = text
# Summarize English source text using BART
english_summary = bart_summarize(english_source_text[:5000])
# Sentence-tokenize the English summary
english_sentences_out = sentence_tokenize_english(english_summary)
if output_lang.lower().startswith("eng"):
# each sentence in a new line
lines = [s.strip() for s in english_sentences_out if s.strip()]
return "\n".join(lines)
# If user wants Hindi output -> translate each English sentence sentence-wise to Hindi
else:
hindi_translations = batch_translate_en_to_hi(english_sentences_out)
lines = [s.strip() for s in hindi_translations if s.strip()]
return "\n".join(lines)
except Exception as e:
return f"β οΈ Error processing PDF: {e}"
# UI
with gr.Blocks() as demo:
gr.Markdown("# π PDF Assist (QA + BART Summarizer β English/Hindi)")
# PDF Question Answering
with gr.Tab("π€ PDF Question Answering"):
gr.Markdown("Ask questions about your uploaded PDF document.")
pdf_file = gr.File(label="π Upload PDF")
upload_btn = gr.Button("Process PDF")
status = gr.Markdown()
question_box = gr.Textbox(label="Ask a question")
ask_btn = gr.Button("Get Answer")
output_box = gr.Markdown()
upload_btn.click(upload_pdf, inputs=pdf_file, outputs=status)
ask_btn.click(get_answer, inputs=question_box, outputs=output_box)
# Academic PDF Summarizer
with gr.Tab("π Academic PDF Summarizer (English β Hindi)"):
gr.Markdown(
"Upload an academic PDF (English or Hindi). The app auto-detects script. "
"Choose output language"
)
pdf_input = gr.File(label="π Upload a PDF", file_types=[".pdf"])
output_choice = gr.Radio(choices=["English summary", "Hindi summary"], value="English summary", label="Choose output language")
summarize_btn = gr.Button("π Summarize")
summarize_out = gr.Textbox(label="π Summary", lines=20)
summarize_btn.click(
fn=summarize_pdf_with_options,
inputs=[pdf_input, output_choice],
outputs=summarize_out,
)
if __name__ == "__main__":
demo.launch(share=True)
|