Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,16 +1,17 @@
|
|
|
|
|
| 1 |
import os, re, functools, numpy as np, pandas as pd
|
| 2 |
import gradio as gr
|
| 3 |
from datasets import load_dataset
|
| 4 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 5 |
|
| 6 |
# -------- Config --------
|
| 7 |
-
SAMPLE_SIZE = int(os.getenv("SAMPLE_SIZE", "
|
| 8 |
RANDOM_STATE = 42
|
| 9 |
DEFAULT_INPUT = "I am so happy with this product"
|
| 10 |
|
| 11 |
# -------- Helpers --------
|
| 12 |
def clean_text(text: str) -> str:
|
| 13 |
-
text = text.lower()
|
| 14 |
text = re.sub(r"http\S+", "", text)
|
| 15 |
text = re.sub(r"@\w+", "", text)
|
| 16 |
text = re.sub(r"#\w+", "", text)
|
|
@@ -33,16 +34,18 @@ def _l2norm(x: np.ndarray) -> np.ndarray:
|
|
| 33 |
x = x.reshape(1, -1)
|
| 34 |
return x / (np.linalg.norm(x, axis=1, keepdims=True) + 1e-12)
|
| 35 |
|
| 36 |
-
# -------- Load sample data once --------
|
| 37 |
@functools.lru_cache(maxsize=1)
|
| 38 |
def load_sample_df():
|
| 39 |
-
|
|
|
|
| 40 |
df = ds.to_pandas()
|
|
|
|
| 41 |
df = df.dropna(subset=["text", "sentiment"]).copy()
|
| 42 |
df["text_length"] = df["text"].str.len()
|
| 43 |
df = df[(df["text_length"] >= 5) & (df["text_length"] <= 280)].copy()
|
| 44 |
df["clean_text"] = df["text"].apply(clean_text)
|
| 45 |
-
df = df.sample(
|
| 46 |
return df[["text", "clean_text"]]
|
| 47 |
|
| 48 |
# -------- Lazy model loaders --------
|
|
@@ -68,7 +71,7 @@ EMBEDDERS = {
|
|
| 68 |
_CORPUS_CACHE = {}
|
| 69 |
|
| 70 |
def _encode_norm(model, texts):
|
| 71 |
-
"""Encode
|
| 72 |
out = model.encode(texts, show_progress_bar=False)
|
| 73 |
out = _to_numpy(out)
|
| 74 |
return _l2norm(out)
|
|
@@ -81,6 +84,7 @@ def ensure_corpus_embeddings(model_name: str, texts: list):
|
|
| 81 |
_CORPUS_CACHE[model_name] = emb
|
| 82 |
return emb
|
| 83 |
|
|
|
|
| 84 |
def top3_for_each_model(user_input: str, selected_models: list):
|
| 85 |
df = load_sample_df()
|
| 86 |
texts = df["clean_text"].tolist()
|
|
@@ -107,7 +111,7 @@ def top3_for_each_model(user_input: str, selected_models: list):
|
|
| 107 |
})
|
| 108 |
return pd.DataFrame(rows, columns=["Model","Rank","Similarity","Tweet (clean)","Tweet (orig)"])
|
| 109 |
|
| 110 |
-
# --------
|
| 111 |
def generate_and_pick_best(prompt: str, n_sequences: int, max_length: int,
|
| 112 |
temperature: float, scorer_model_name: str,
|
| 113 |
progress=gr.Progress()):
|
|
@@ -166,9 +170,9 @@ Type a tweet, get similar tweets from Sentiment140, and generate a new one.
|
|
| 166 |
gr.Markdown("## 📝 Generate Tweets and Pick the Best")
|
| 167 |
|
| 168 |
with gr.Row():
|
| 169 |
-
n_seq = gr.Slider(
|
| 170 |
-
max_len = gr.Slider(
|
| 171 |
-
temp = gr.Slider(0.
|
| 172 |
scorer_model = gr.Dropdown(list(EMBEDDERS.keys()), value="MiniLM (fast)", label="Scorer embedding")
|
| 173 |
|
| 174 |
gen_btn = gr.Button("✨ Generate & Score")
|
|
@@ -182,8 +186,4 @@ Type a tweet, get similar tweets from Sentiment140, and generate a new one.
|
|
| 182 |
outputs=[best_txt, best_score, gen_table],
|
| 183 |
)
|
| 184 |
|
| 185 |
-
gr.Markdown("---")
|
| 186 |
-
gr.Markdown("## 🖼️ Project Photo (optional)")
|
| 187 |
-
photo = gr.Image(label="Upload your project photo (jpg/png)", type="filepath")
|
| 188 |
-
|
| 189 |
demo.queue(max_size=32).launch()
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
import os, re, functools, numpy as np, pandas as pd
|
| 3 |
import gradio as gr
|
| 4 |
from datasets import load_dataset
|
| 5 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 6 |
|
| 7 |
# -------- Config --------
|
| 8 |
+
SAMPLE_SIZE = int(os.getenv("SAMPLE_SIZE", "3000")) # small by default for CPU Spaces
|
| 9 |
RANDOM_STATE = 42
|
| 10 |
DEFAULT_INPUT = "I am so happy with this product"
|
| 11 |
|
| 12 |
# -------- Helpers --------
|
| 13 |
def clean_text(text: str) -> str:
|
| 14 |
+
text = (text or "").lower()
|
| 15 |
text = re.sub(r"http\S+", "", text)
|
| 16 |
text = re.sub(r"@\w+", "", text)
|
| 17 |
text = re.sub(r"#\w+", "", text)
|
|
|
|
| 34 |
x = x.reshape(1, -1)
|
| 35 |
return x / (np.linalg.norm(x, axis=1, keepdims=True) + 1e-12)
|
| 36 |
|
| 37 |
+
# -------- Load sample data once (FAST: only a slice) --------
|
| 38 |
@functools.lru_cache(maxsize=1)
|
| 39 |
def load_sample_df():
|
| 40 |
+
# Load only a slice (e.g., first 3000 rows) instead of the full 1.6M
|
| 41 |
+
ds = load_dataset("sentiment140", split=f"train[:{SAMPLE_SIZE}]")
|
| 42 |
df = ds.to_pandas()
|
| 43 |
+
|
| 44 |
df = df.dropna(subset=["text", "sentiment"]).copy()
|
| 45 |
df["text_length"] = df["text"].str.len()
|
| 46 |
df = df[(df["text_length"] >= 5) & (df["text_length"] <= 280)].copy()
|
| 47 |
df["clean_text"] = df["text"].apply(clean_text)
|
| 48 |
+
df = df.sample(frac=1.0, random_state=RANDOM_STATE).reset_index(drop=True)
|
| 49 |
return df[["text", "clean_text"]]
|
| 50 |
|
| 51 |
# -------- Lazy model loaders --------
|
|
|
|
| 71 |
_CORPUS_CACHE = {}
|
| 72 |
|
| 73 |
def _encode_norm(model, texts):
|
| 74 |
+
"""Encode compatibly across sentence-transformers versions; return L2-normalized numpy (n,d)."""
|
| 75 |
out = model.encode(texts, show_progress_bar=False)
|
| 76 |
out = _to_numpy(out)
|
| 77 |
return _l2norm(out)
|
|
|
|
| 84 |
_CORPUS_CACHE[model_name] = emb
|
| 85 |
return emb
|
| 86 |
|
| 87 |
+
# -------- Retrieval --------
|
| 88 |
def top3_for_each_model(user_input: str, selected_models: list):
|
| 89 |
df = load_sample_df()
|
| 90 |
texts = df["clean_text"].tolist()
|
|
|
|
| 111 |
})
|
| 112 |
return pd.DataFrame(rows, columns=["Model","Rank","Similarity","Tweet (clean)","Tweet (orig)"])
|
| 113 |
|
| 114 |
+
# -------- Generation + scoring (with progress) --------
|
| 115 |
def generate_and_pick_best(prompt: str, n_sequences: int, max_length: int,
|
| 116 |
temperature: float, scorer_model_name: str,
|
| 117 |
progress=gr.Progress()):
|
|
|
|
| 170 |
gr.Markdown("## 📝 Generate Tweets and Pick the Best")
|
| 171 |
|
| 172 |
with gr.Row():
|
| 173 |
+
n_seq = gr.Slider(1, 8, value=4, step=1, label="Number of candidates")
|
| 174 |
+
max_len = gr.Slider(20, 80, value=40, step=1, label="Max length (new tokens)")
|
| 175 |
+
temp = gr.Slider(0.7, 1.3, value=0.9, step=0.05, label="Temperature")
|
| 176 |
scorer_model = gr.Dropdown(list(EMBEDDERS.keys()), value="MiniLM (fast)", label="Scorer embedding")
|
| 177 |
|
| 178 |
gen_btn = gr.Button("✨ Generate & Score")
|
|
|
|
| 186 |
outputs=[best_txt, best_score, gen_table],
|
| 187 |
)
|
| 188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
demo.queue(max_size=32).launch()
|