Spaces:
Running
Running
File size: 8,217 Bytes
651ddf8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
#!/usr/bin/env python
# coding: utf-8
# # Perl to Python Code Generator
#
# The requirement: use a Frontier model to generate high performance Python code from Perl code
#
# In[ ]:
#get_ipython().system('pip install -q transformers huggingface_hub')
# In[ ]:
# imports
import os
import io
import sys
from dotenv import load_dotenv
from openai import OpenAI
import google.generativeai
import anthropic
import gradio as gr
import subprocess
import json
#for Hugging face end points
from huggingface_hub import login, InferenceClient
from transformers import AutoTokenizer
# In[ ]:
# environment
load_dotenv(override=True)
os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')
os.environ['ANTHROPIC_API_KEY'] = os.getenv('ANTHROPIC_API_KEY', 'your-key-if-not-using-env')
os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN', 'your-key-if-not-using-env')
##for connecting to HF End point
hf_token = os.environ['HF_TOKEN']
login(hf_token, add_to_git_credential=True)
# In[ ]:
# initialize
# NOTE - option to use ultra-low cost models by uncommenting last 2 lines
openai = OpenAI()
claude = anthropic.Anthropic()
OPENAI_MODEL = "gpt-4o"
CLAUDE_MODEL = "claude-3-5-sonnet-20240620"
# Want to keep costs ultra-low? Uncomment these lines:
#OPENAI_MODEL = "gpt-4o-mini"
#CLAUDE_MODEL = "claude-3-haiku-20240307"
#To access open source models from Hugging face end points
code_qwen = "Qwen/CodeQwen1.5-7B-Chat"
code_gemma = "google/codegemma-7b-it"
CODE_QWEN_URL = "https://u9pv0u7a6uxrjubt.us-east-1.aws.endpoints.huggingface.cloud" #Paste your end point URL from Hugging face
CODE_GEMMA_URL = "https://c5hggiyqachmgnqg.us-east-1.aws.endpoints.huggingface.cloud" #Paste your end point URL from Hugging face
# In[ ]:
system_message = "You are an assistant that reimplements Perl scripts code into a high performance Python for a Windows 11 PC. "
system_message += "Respond only with Python code; use comments sparingly and do not provide any explanation other than occasional comments preceded by a # tag."
system_message += "The Python response needs to produce an identical output in the fastest possible time."
# In[ ]:
def user_prompt_for(perl):
user_prompt = "Rewrite this Perl scripts code in Python with the fastest possible implementation that produces identical output in the least time. "
user_prompt += "Respond only with Python code; do not explain your work other than a few comments. "
user_prompt += "Pay attention to number types to ensure no int overflows. Remember to #include all necessary python libraries as needed,\
such as requests, os, json etc.\n\n"
user_prompt += perl
return user_prompt
# In[ ]:
def messages_for(perl):
return [
{"role": "system", "content": system_message},
{"role": "user", "content": user_prompt_for(perl)}
]
# In[ ]:
# write to a file
def write_output(python, file_path):
# Get the base filename from the path
base_name = os.path.basename(file_path)
filename = os.path.splitext(base_name)[0]
code = python.replace("```python","").replace("```","")
output_file = f"{filename}.py"
with open(output_file, "w") as f:
f.write(code)
return output_file
# In[ ]:
def stream_gpt(perl, file_path):
stream = openai.chat.completions.create(model=OPENAI_MODEL, messages=messages_for(perl), stream=True)
reply = ""
for chunk in stream:
fragment = chunk.choices[0].delta.content or ""
reply += fragment
cleaned_reply = reply.replace('```python\n','').replace('```','')
yield cleaned_reply, None
yield cleaned_reply, write_output(cleaned_reply, file_path)
# In[ ]:
def stream_claude(perl, file_path):
result = claude.messages.stream(
model=CLAUDE_MODEL,
max_tokens=2000,
system=system_message,
messages=[{"role": "user", "content": user_prompt_for(perl)}],
)
reply = ""
with result as stream:
for text in stream.text_stream:
reply += text
cleaned_reply = reply.replace('```python\n','').replace('```','')
yield cleaned_reply, None
yield cleaned_reply, write_output(cleaned_reply, file_path)
# In[ ]:
def stream_code_qwen(perl, file_path):
tokenizer = AutoTokenizer.from_pretrained(code_qwen)
messages = messages_for(perl)
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
client = InferenceClient(CODE_QWEN_URL, token=hf_token)
stream = client.text_generation(text, stream=True, details=True, max_new_tokens=3000)
result = ""
for r in stream:
result += r.token.text
cleaned_reply = result.replace('```python\n','').replace('```','')
yield cleaned_reply, None
yield cleaned_reply, write_output(cleaned_reply, file_path)
# In[ ]:
def generate(perl_script, model, file_path):
if model=="GPT":
for result, file in stream_gpt(perl_script, file_path):
yield result, file
yield result, file
elif model=="Claude":
for result, file in stream_claude(perl_script, file_path):
yield result, file
yield result, file
elif model=="CodeQwen":
for result, file in stream_code_qwen(perl_script, file_path):
yield result, file
yield result, file
else:
raise ValueError("Unknown model")
# In[ ]:
def execute_perl(perl_code):
import subprocess
#print(perl_file)
#perl_path = r"E:\Softwares\Perl\perl\bin\perl.exe"
# Run Perl script from Jupyter Lab
result = subprocess.run(["perl", '-e', perl_code], capture_output=True, text=True)
# Return the output of the Perl script
return result.stdout
# In[ ]:
def execute_python(code):
try:
output = io.StringIO()
sys.stdout = output
exec(code)
finally:
sys.stdout = sys.__stdout__
return output.getvalue()
# In[ ]:
css = """
.perl {background-color: #093645;}
.python {background-color: #0948;}
"""
force_dark_mode = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
# In[ ]:
with gr.Blocks(css=css, js=force_dark_mode) as ui:
gr.HTML("<h2 style='text-align: center; color: white;'> PERL to Python Code Generator</h2>")
with gr.Row(scale=0, equal_height=True):
model = gr.Dropdown(["GPT", "Claude", "CodeQwen"], label="Select model", value="GPT")
perl_file = gr.File(label="Upload Perl Script:")
convert = gr.Button("Convert to Python")
file_output = gr.File(label="Download Python script", visible=False)
with gr.Row():
perl_script = gr.Textbox(label="Perl Script:")
python_script = gr.Textbox(label="Converted Python Script:")
with gr.Row():
perl_run = gr.Button("Run PERL")
python_run = gr.Button("Run Python")
with gr.Row():
perl_out = gr.TextArea(label="PERL Result:", elem_classes=["perl"])
python_out = gr.TextArea(label="Python Result:", elem_classes=["python"])
with gr.Row():
clear_button = gr.Button("Clear")
def extract_perl_code(file):
if file is None:
return "No file uploaded."
with open(file.name, "r", encoding="utf-8") as f:
perl_code = f.read()
return perl_code
convert.click(extract_perl_code, inputs=[perl_file], outputs=[perl_script]).then(
generate, inputs=[perl_script, model, perl_file], outputs=[python_script, file_output]).then(
lambda file_output: gr.update(visible=True), inputs=[file_output], outputs=[file_output]
)
perl_run.click(execute_perl, inputs=[perl_script], outputs=[perl_out])
python_run.click(execute_python, inputs=[python_script], outputs=[python_out])
def clear_all():
return None, "", "", gr.update(visible=False), "", ""
clear_button.click(
clear_all,
outputs=[perl_file, perl_script, python_script, file_output, perl_out, python_out]
)
ui.launch(inbrowser=True)
# In[ ]:
|