|
|
|
|
|
import torch
|
|
|
import torch.nn as nn
|
|
|
import torchvision.models as models
|
|
|
|
|
|
class AstronomyClassifier(nn.Module):
|
|
|
"""Astronomy Image Classification Model"""
|
|
|
|
|
|
def __init__(self, model_name='resnet50', num_classes=6, pretrained=False):
|
|
|
super(AstronomyClassifier, self).__init__()
|
|
|
|
|
|
self.model_name = model_name
|
|
|
self.num_classes = num_classes
|
|
|
|
|
|
|
|
|
if model_name == 'resnet50':
|
|
|
self.backbone = models.resnet50(pretrained=pretrained)
|
|
|
num_features = self.backbone.fc.in_features
|
|
|
self.backbone.fc = nn.Identity()
|
|
|
elif model_name == 'densenet121':
|
|
|
self.backbone = models.densenet121(pretrained=pretrained)
|
|
|
num_features = self.backbone.classifier.in_features
|
|
|
self.backbone.classifier = nn.Identity()
|
|
|
else:
|
|
|
raise ValueError(f"Unsupported model: {model_name}")
|
|
|
|
|
|
|
|
|
self.classifier = nn.Sequential(
|
|
|
nn.Dropout(0.5),
|
|
|
nn.Linear(num_features, 512),
|
|
|
nn.ReLU(),
|
|
|
nn.BatchNorm1d(512),
|
|
|
nn.Dropout(0.5),
|
|
|
nn.Linear(512, 256),
|
|
|
nn.ReLU(),
|
|
|
nn.BatchNorm1d(256),
|
|
|
nn.Dropout(0.5),
|
|
|
nn.Linear(256, num_classes)
|
|
|
)
|
|
|
|
|
|
def forward(self, x):
|
|
|
features = self.backbone(x)
|
|
|
output = self.classifier(features)
|
|
|
return output
|
|
|
|
|
|
|
|
|
MODEL_CONFIG = {
|
|
|
"model_name": "resnet50",
|
|
|
"num_classes": 6,
|
|
|
"class_names": ["constellation", "cosmos", "galaxies", "nebula", "planets", "stars"],
|
|
|
"input_size": (224, 224),
|
|
|
"mean": [0.485, 0.456, 0.406],
|
|
|
"std": [0.229, 0.224, 0.225]
|
|
|
} |