File size: 5,562 Bytes
a39758a
 
 
 
 
 
 
 
 
306ceb5
 
f8f03f7
a39758a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
511d5ac
 
 
 
a39758a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ff859e
 
 
 
a39758a
 
 
 
 
 
 
 
 
 
 
 
 
 
306ceb5
a39758a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8f03f7
 
 
 
 
 
 
9afea81
306ceb5
f8f03f7
2bcd3f6
306ceb5
2bcd3f6
c6fdf73
f8f03f7
306ceb5
a39758a
 
 
 
306ceb5
a39758a
 
 
 
 
 
 
306ceb5
a39758a
 
aa06fd4
a39758a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306ceb5
a39758a
 
 
 
 
 
 
306ceb5
a39758a
 
 
 
 
 
 
 
 
 
 
 
511d5ac
aa06fd4
a39758a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import gradio as gr
import numpy as np
import random

# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
#model_repo_id = "stabilityai/sdxl-turbo"  # Replace to the model you would like to use
model_repo_id = "CompVis/stable-diffusion-v1-4"
model_dropdown = ['stabilityai/sdxl-turbo', 'CompVis/stable-diffusion-v1-4' ]

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt,
    negative_prompt,
    randomize_seed,
    width,
    height,
    model_repo_id=model_repo_id,
    seed=42,
    guidance_scale=7,
    num_inference_steps=20,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed


examples = [
    "A young lady in a Russian embroidered kaftan is sitting on a beautiful carved veranda, holding a cup to her mouth and drinking tea from the cup. With her other hand, the girl holds a saucer. The cup and saucer are painted with gzhel. Next to the girl on the table stands a samovar, and steam can be seen above it.",
    "Puss in Boots wearing a sombrero crosses the Grand Canyon on a tightrope with a guitar.",
    "A cat is playing a song called "About the Cat" on an accordion by the sea at sunset. The sun is quickly setting behind the horizon, and the light is fading.",
    "A cat walks through the grass on the streets of an abandoned city. The camera view is always focused on the cat's face.",
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image SemaSci Template")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
#            model_repo_id = gr.Text(
#                label="Model Id",
#                max_lines=1,
#                placeholder="Choose model",
#                visible=True,
#                value=model_repo_id,
#            )
            model_repo_id = gr.Dropdown(
                label="Model Id",
                choices=model_dropdown,
                info="Choose model",
                visible=True,
                allow_custom_value=True,
                value=model_repo_id,
            )            
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=False)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.0,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=20,  # Replace with defaults that work for your model
                )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            randomize_seed,
            width,
            height,
            model_repo_id,
            seed,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()