Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
| # Initialize tokenizer and model | |
| model_name = "your_hugging_face_model_name_or_url" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
| def translate(text): | |
| # Tokenize the text | |
| input_ids = tokenizer.batch_encode_plus([text], return_tensors="pt")["input_ids"] | |
| # Generate the translation | |
| outputs = model.generate(input_ids, max_length=100) | |
| # Decode the translation | |
| translation = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
| return translation | |
| def main(): | |
| # Get the user's input | |
| text = st.text_input("Enter a Russian text to translate:") | |
| # Translate the text | |
| translation = translate(text) | |
| # Display the translation | |
| st.text(translation) | |
| if __name__ == "__main__": | |
| main() | |