Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
# Initialize the audio classification pipeline with the MIT model | |
pipe = pipeline("audio-classification", model="MIT/ast-finetuned-audioset-10-10-0.4593") | |
# Define the function to classify an audio file | |
def classify_audio(audio): | |
result = pipe(audio) | |
return {label['label']: label['score'] for label in result} | |
# Set up the Gradio interface | |
app = gr.Interface( | |
fn=classify_audio, # Function to classify audio | |
inputs=gr.Audio(type="filepath"), # Input for uploading an audio file | |
outputs=gr.Label(num_top_classes=3), # Output with top 3 classification results | |
title="Audio Classification", # App title | |
description="Upload an audio file to classify it using MIT's fine-tuned AudioSet model." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
app.launch() | |