Upload Cuad_others.py
Browse files- Cuad_others.py +67 -0
Cuad_others.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from predict import run_prediction
|
| 2 |
+
from io import StringIO
|
| 3 |
+
import json
|
| 4 |
+
import spacy
|
| 5 |
+
from spacy import displacy
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
import torch
|
| 8 |
+
import nltk
|
| 9 |
+
nltk.download('punkt')
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
##Summarization
|
| 15 |
+
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
|
| 16 |
+
def summarize_text(text):
|
| 17 |
+
resp = summarizer(text)
|
| 18 |
+
stext = resp[0]['summary_text']
|
| 19 |
+
return stext
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
##Company Extraction
|
| 23 |
+
ner=pipeline('ner',model='Jean-Baptiste/camembert-ner-with-dates',tokenizer='Jean-Baptiste/camembert-ner-with-dates', aggregation_strategy="simple")
|
| 24 |
+
def fin_ner(text):
|
| 25 |
+
replaced_spans = ner(text)
|
| 26 |
+
new_spans=[]
|
| 27 |
+
for item in replaced_spans:
|
| 28 |
+
item['entity']=item['entity_group']
|
| 29 |
+
del item['entity_group']
|
| 30 |
+
new_spans.append(item)
|
| 31 |
+
return {"text": text, "entities": new_spans}
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
#CUAD STARTS
|
| 35 |
+
def load_questions():
|
| 36 |
+
questions = []
|
| 37 |
+
with open('questions.txt') as f:
|
| 38 |
+
questions = f.readlines()
|
| 39 |
+
return questions
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def load_questions_short():
|
| 43 |
+
questions_short = []
|
| 44 |
+
with open('questionshort.txt') as f:
|
| 45 |
+
questions_short = f.readlines()
|
| 46 |
+
return questions_short
|
| 47 |
+
|
| 48 |
+
def quad(query,file):
|
| 49 |
+
with open(file) as f:
|
| 50 |
+
paragraph = f.read()
|
| 51 |
+
questions = load_questions()
|
| 52 |
+
questions_short = load_questions_short()
|
| 53 |
+
if (not len(paragraph)==0) and not (len(query)==0):
|
| 54 |
+
print('getting predictions')
|
| 55 |
+
predictions = run_prediction([query], paragraph, 'marshmellow77/roberta-base-cuad',n_best_size=5)
|
| 56 |
+
answer = ""
|
| 57 |
+
answer_p=""
|
| 58 |
+
if predictions['0'] == "":
|
| 59 |
+
answer = 'No answer found in document'
|
| 60 |
+
else:
|
| 61 |
+
with open("nbest.json") as jf:
|
| 62 |
+
data = json.load(jf)
|
| 63 |
+
for i in range(1):
|
| 64 |
+
raw_answer=data['0'][i]['text']
|
| 65 |
+
answer += f"{data['0'][i]['text']}\n"
|
| 66 |
+
answer_p =answer+ f"Probability: {round(data['0'][i]['probability']*100,1)}%\n\n"
|
| 67 |
+
return answer,answer_p
|