import streamlit as st import pickle import re #loading models clf = pickle.load(open('clf.pkl','rb')) tfidf = pickle.load(open('tfidf.pkl','rb')) def clean_resume(resume_text): """ Clean the text in the resume i.e. remove unwanted chars in the text. For e.g. 1 URLs, 2 Hashtags, 3 Mentions, 4 Special Chars, 5 Punctuations Parameters: resume_text (str): The input resume text to be cleaned. Returns: clean_text (str): Clean Resume. """ clean_text = re.sub('http\S+\s*', ' ', resume_text) clean_text = re.sub('RT|cc', ' ', clean_text) clean_text = re.sub('#\S+', '', clean_text) clean_text = re.sub('@\S+', ' ', clean_text) clean_text = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', clean_text) clean_text = re.sub(r'[^\x00-\x7f]', r' ', clean_text) clean_text = re.sub('\s+', ' ', clean_text) return clean_text def remove_stopwords(text, language='english'): """ Remove stopwords from a given text. Parameters: text (str): The input text from which to remove stopwords. language (str): The language of the stopwords. Default is 'english'. Returns: filtered_text (str): Text without stopwords. """ stop_words = set([ "i", "me", "my", "myself", "we", "our", "ours", "ourselves", "you", "your", "yours", "yourself", "yourselves", "he", "him", "his", "himself", "she", "her", "hers", "herself", "it", "its", "itself", "they", "them", "their", "theirs", "themselves", "what", "which", "who", "whom", "this", "that", "these", "those", "am", "is", "are", "was", "were", "be", "been", "being", "have", "has", "had", "having", "do", "does", "did", "doing", "a", "an", "the", "and", "but", "if", "or", "because", "as", "until", "while", "of", "at", "by", "for", "with", "about", "against", "between", "into", "through", "during", "before", "after", "above", "below", "to", "from", "up", "down", "in", "out", "on", "off", "over", "under", "again", "further", "then", "once", "here", "there", "when", "where", "why", "how", "all", "any", "both", "each", "few", "more", "most", "other", "some", "such", "no", "nor", "not", "only", "own", "same", "so", "than", "too", "very", "s", "t", "can", "will", "just", "don", "should", "now" ]) words = text.split() filtered_words = [word for word in words if word.lower() not in stop_words] filtered_text = ' '.join(filtered_words) return filtered_text # web app def main(): st.title("Resume Screening App") uploaded_file = st.file_uploader('Upload Resume', type=['txt','pdf']) if uploaded_file is not None: try: resume_bytes = uploaded_file.read() resume_text = resume_bytes.decode('utf-8') except UnicodeDecodeError: # If UTF-8 decoding fails, try decoding with 'latin-1' resume_text = resume_bytes.decode('latin-1') cleaned_resume = clean_resume(resume_text) cleaned_resume = remove_stopwords(cleaned_resume) input_features = tfidf.transform([cleaned_resume]) prediction_id = clf.predict(input_features)[0] st.write(prediction_id) # Map category ID to category name category_mapping = { 15: "Java Developer", 23: "Testing", 8: "DevOps Engineer", 20: "Python Developer", 24: "Web Designing", 12: "HR", 13: "Hadoop", 3: "Blockchain", 10: "ETL Developer", 18: "Operations Manager", 6: "Data Science", 22: "Sales", 16: "Mechanical Engineer", 1: "Arts", 7: "Database", 11: "Electrical Engineering", 14: "Health and fitness", 19: "PMO", 4: "Business Analyst", 9: "DotNet Developer", 2: "Automation Testing", 17: "Network Security Engineer", 21: "SAP Developer", 5: "Civil Engineer", 0: "Advocate", } category_name = category_mapping.get(prediction_id, "Unknown") st.write("Predicted Category:", category_name) # python main if __name__ == "__main__": main()