Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,11 @@ import torch
|
|
2 |
from transformers import BertTokenizer, BertForSequenceClassification
|
3 |
import gradio as gr
|
4 |
|
5 |
-
# Load
|
6 |
-
model = BertForSequenceClassification.from_pretrained("
|
7 |
-
tokenizer = BertTokenizer.from_pretrained("
|
8 |
|
9 |
model.eval()
|
10 |
-
|
11 |
label_map = {0: "statement", 1: "question"}
|
12 |
|
13 |
def classify_sentence(text):
|
@@ -17,7 +16,6 @@ def classify_sentence(text):
|
|
17 |
predicted_class = torch.argmax(outputs.logits, dim=1).item()
|
18 |
return label_map[predicted_class]
|
19 |
|
20 |
-
# Gradio Interface
|
21 |
interface = gr.Interface(
|
22 |
fn=classify_sentence,
|
23 |
inputs=gr.Textbox(lines=2, placeholder="Enter a sentence..."),
|
|
|
2 |
from transformers import BertTokenizer, BertForSequenceClassification
|
3 |
import gradio as gr
|
4 |
|
5 |
+
# Load model from local folder
|
6 |
+
model = BertForSequenceClassification.from_pretrained(".", trust_remote_code=True)
|
7 |
+
tokenizer = BertTokenizer.from_pretrained(".")
|
8 |
|
9 |
model.eval()
|
|
|
10 |
label_map = {0: "statement", 1: "question"}
|
11 |
|
12 |
def classify_sentence(text):
|
|
|
16 |
predicted_class = torch.argmax(outputs.logits, dim=1).item()
|
17 |
return label_map[predicted_class]
|
18 |
|
|
|
19 |
interface = gr.Interface(
|
20 |
fn=classify_sentence,
|
21 |
inputs=gr.Textbox(lines=2, placeholder="Enter a sentence..."),
|