Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Load fine-tuned model
|
6 |
+
model = BertForSequenceClassification.from_pretrained("bert-expense-classifier")
|
7 |
+
tokenizer = BertTokenizer.from_pretrained("bert-expense-classifier")
|
8 |
+
|
9 |
+
model.eval()
|
10 |
+
|
11 |
+
label_map = {0: "statement", 1: "question"}
|
12 |
+
|
13 |
+
def classify_sentence(text):
|
14 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128)
|
15 |
+
with torch.no_grad():
|
16 |
+
outputs = model(**inputs)
|
17 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).item()
|
18 |
+
return label_map[predicted_class]
|
19 |
+
|
20 |
+
# Gradio Interface
|
21 |
+
interface = gr.Interface(
|
22 |
+
fn=classify_sentence,
|
23 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter a sentence..."),
|
24 |
+
outputs=gr.Textbox(label="Prediction"),
|
25 |
+
title="Expense Sentence Classifier",
|
26 |
+
description="Classifies whether a sentence is a user question or a statement for an expense tracker."
|
27 |
+
)
|
28 |
+
|
29 |
+
if __name__ == "__main__":
|
30 |
+
interface.launch()
|