Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +655 -34
src/streamlit_app.py
CHANGED
@@ -1,40 +1,661 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
"""
|
7 |
-
# Welcome to Streamlit!
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
"""
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
streamlitapp.py โ Vision Transformer Interpretability Dashboard (Streamlit app)
|
3 |
+
|
4 |
+
This Streamlit app provides interpretability tools for vision transformer and CNN models.
|
5 |
+
Features:
|
6 |
+
- LIME explanations for image classification predictions
|
7 |
+
- Uncertainty analysis via MC Dropout and Test-Time Augmentation (TTA)
|
8 |
+
- Switch between Hugging Face (ViT, Swin, DeiT) and timm (ResNet, EfficientNet, ConvNeXt) models
|
9 |
+
- Support for custom finetuned models and class mappings
|
10 |
+
- Interactive sidebar for model selection and checkpoint upload
|
11 |
+
- Feynman-style explanations and cheat-sheet for interpretability concepts
|
12 |
+
|
13 |
+
Inspired by and reuses code from:
|
14 |
+
- vit_and_captum.py (Integrated Gradients with Captum)
|
15 |
+
- vit_lime_uncertainty.py (LIME explanations and uncertainty)
|
16 |
+
- detr_and_interp.py (Grad-CAM for DETR, logging setup)
|
17 |
+
'''
|
18 |
+
|
19 |
import streamlit as st
|
20 |
+
import html
|
21 |
+
import numpy as np, torch, matplotlib.pyplot as plt
|
22 |
+
from PIL import Image
|
23 |
+
from transformers import AutoModelForImageClassification, AutoImageProcessor, PreTrainedModel
|
24 |
+
from lime import lime_image
|
25 |
+
import torchvision.transforms as T
|
26 |
+
import timm
|
27 |
+
from skimage.segmentation import slic, mark_boundaries
|
28 |
+
import streamlit.components.v1 as components
|
29 |
|
|
|
|
|
30 |
|
31 |
+
# Add logging
|
32 |
+
import logging, os
|
33 |
+
from logging.handlers import RotatingFileHandler
|
34 |
+
|
35 |
+
LOG_DIR = os.path.join(os.path.dirname(__file__), "logs")
|
36 |
+
os.makedirs(LOG_DIR, exist_ok=True)
|
37 |
+
logfile = os.path.join(LOG_DIR, "interp.log")
|
38 |
+
|
39 |
+
logger = logging.getLogger("interp")
|
40 |
+
if not logger.handlers:
|
41 |
+
logger.setLevel(logging.INFO)
|
42 |
+
sh = logging.StreamHandler()
|
43 |
+
sh.setLevel(logging.INFO)
|
44 |
+
fh = RotatingFileHandler(logfile, maxBytes=5_000_000, backupCount=3, encoding="utf-8")
|
45 |
+
fh.setLevel(logging.INFO)
|
46 |
+
fmt = logging.Formatter("%(asctime)s %(levelname)s %(name)s: %(message)s")
|
47 |
+
sh.setFormatter(fmt)
|
48 |
+
fh.setFormatter(fmt)
|
49 |
+
logger.addHandler(sh)
|
50 |
+
logger.addHandler(fh)
|
51 |
+
|
52 |
+
|
53 |
+
# ---------------- Setup ----------------
|
54 |
+
MODEL_NAME = "google/vit-base-patch16-224"
|
55 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
56 |
+
|
57 |
+
# ---------- Sidebar model selectors ----------
|
58 |
+
# Quick lists you can edit to test other HF / timm models
|
59 |
+
HF_MODELS = [
|
60 |
+
"google/vit-base-patch16-224",
|
61 |
+
"facebook/deit-base-patch16-224",
|
62 |
+
"microsoft/swin-tiny-patch4-window7-224",
|
63 |
+
"google/vit-large-patch16-224",
|
64 |
+
]
|
65 |
+
TIMM_MODELS = [
|
66 |
+
"convnext_base",
|
67 |
+
"resnet50",
|
68 |
+
"efficientnet_b0",
|
69 |
+
]
|
70 |
+
|
71 |
+
def model_selector(slot_key: str, default_source="hf"):
|
72 |
+
source = st.sidebar.selectbox(
|
73 |
+
f"{slot_key} source",
|
74 |
+
["hf", "timm"],
|
75 |
+
index=0 if default_source == "hf" else 1,
|
76 |
+
key=f"{slot_key}_source",
|
77 |
+
)
|
78 |
+
if source == "hf":
|
79 |
+
hf_choice = st.sidebar.selectbox(
|
80 |
+
f"{slot_key} Hugging Face model",
|
81 |
+
HF_MODELS,
|
82 |
+
index=0,
|
83 |
+
key=f"{slot_key}_hf",
|
84 |
+
)
|
85 |
+
return f"hf:{hf_choice}"
|
86 |
+
else:
|
87 |
+
timm_choice = st.sidebar.selectbox(
|
88 |
+
f"{slot_key} timm model",
|
89 |
+
TIMM_MODELS,
|
90 |
+
index=0,
|
91 |
+
key=f"{slot_key}_timm",
|
92 |
+
)
|
93 |
+
return f"timm:{timm_choice}"
|
94 |
+
|
95 |
+
# ---------- Model Loader ----------
|
96 |
+
# Use Streamlit caching when available to avoid repeated downloads
|
97 |
+
try:
|
98 |
+
cache_decorator = st.cache_resource
|
99 |
+
except Exception:
|
100 |
+
from functools import lru_cache
|
101 |
+
cache_decorator = lru_cache(maxsize=8)
|
102 |
+
|
103 |
+
@cache_decorator
|
104 |
+
def load_model(choice, checkpoint=None, class_map=None, num_classes=None):
|
105 |
+
"""
|
106 |
+
Load a model from HF, timm, or a custom checkpoint
|
107 |
+
Args:
|
108 |
+
choice: Model identifier ('hf:model_name' or 'timm:model_name')
|
109 |
+
checkpoint: Optional path to custom checkpoint file
|
110 |
+
class_map: Optional dict mapping class indices to labels
|
111 |
+
num_classes: Optional number of classes for custom models
|
112 |
+
"""
|
113 |
+
logger.info("Loading model: %s", choice)
|
114 |
+
is_hf = choice.startswith("hf:")
|
115 |
+
|
116 |
+
# Parse model identifier
|
117 |
+
if is_hf:
|
118 |
+
hf_name = choice.split("hf:")[1]
|
119 |
+
if checkpoint: # Custom checkpoint
|
120 |
+
# For custom HF model, first load the architecture then apply weights
|
121 |
+
try:
|
122 |
+
if num_classes:
|
123 |
+
model = AutoModelForImageClassification.from_pretrained(
|
124 |
+
hf_name, num_labels=num_classes, ignore_mismatched_sizes=True
|
125 |
+
).to(device)
|
126 |
+
else:
|
127 |
+
model = AutoModelForImageClassification.from_pretrained(hf_name).to(device)
|
128 |
+
|
129 |
+
# Load checkpoint with error handling
|
130 |
+
state_dict = torch.load(checkpoint, map_location=device)
|
131 |
+
# If state_dict is wrapped (common in training checkpoints)
|
132 |
+
if "model" in state_dict:
|
133 |
+
state_dict = state_dict["model"]
|
134 |
+
elif "state_dict" in state_dict:
|
135 |
+
state_dict = state_dict["state_dict"]
|
136 |
+
|
137 |
+
# Handle any prefix differences by checking and stripping if needed
|
138 |
+
if all(k.startswith('model.') for k in state_dict if k != 'config'):
|
139 |
+
state_dict = {k[6:]: v for k, v in state_dict.items() if k != 'config'}
|
140 |
+
|
141 |
+
# Load with flexible partial loading (ignore missing/unexpected)
|
142 |
+
model.load_state_dict(state_dict, strict=False)
|
143 |
+
logger.info("Custom checkpoint loaded for HF model")
|
144 |
+
|
145 |
+
# If custom class mapping provided, update config
|
146 |
+
if class_map:
|
147 |
+
model.config.id2label = class_map
|
148 |
+
model.config.label2id = {v: int(k) for k, v in class_map.items()}
|
149 |
+
except Exception as e:
|
150 |
+
logger.error(f"Error loading custom HF model: {e}")
|
151 |
+
st.error(f"Failed to load custom model: {e}")
|
152 |
+
# Fallback to base model
|
153 |
+
model = AutoModelForImageClassification.from_pretrained(hf_name).to(device)
|
154 |
+
else:
|
155 |
+
# Standard HF model
|
156 |
+
model = AutoModelForImageClassification.from_pretrained(hf_name).to(device)
|
157 |
+
|
158 |
+
processor = AutoImageProcessor.from_pretrained(hf_name)
|
159 |
+
|
160 |
+
elif choice.startswith("timm:"):
|
161 |
+
name = choice.split("timm:")[1]
|
162 |
+
if checkpoint: # Custom checkpoint
|
163 |
+
try:
|
164 |
+
# For timm, specify custom number of classes if provided
|
165 |
+
if num_classes:
|
166 |
+
model = timm.create_model(name, pretrained=False, num_classes=num_classes).to(device)
|
167 |
+
else:
|
168 |
+
model = timm.create_model(name, pretrained=True).to(device)
|
169 |
+
|
170 |
+
# Load checkpoint
|
171 |
+
state_dict = torch.load(checkpoint, map_location=device)
|
172 |
+
# Handle common checkpoint formats
|
173 |
+
if "model" in state_dict:
|
174 |
+
state_dict = state_dict["model"]
|
175 |
+
elif "state_dict" in state_dict:
|
176 |
+
state_dict = state_dict["state_dict"]
|
177 |
+
|
178 |
+
# Handle any prefix differences
|
179 |
+
if all(k.startswith('module.') for k in state_dict):
|
180 |
+
state_dict = {k[7:]: v for k, v in state_dict}
|
181 |
+
|
182 |
+
model.load_state_dict(state_dict, strict=False)
|
183 |
+
logger.info("Custom checkpoint loaded for timm model")
|
184 |
+
except Exception as e:
|
185 |
+
logger.error(f"Error loading custom timm model: {e}")
|
186 |
+
st.error(f"Failed to load custom model: {e}")
|
187 |
+
# Fallback to pretrained
|
188 |
+
model = timm.create_model(name, pretrained=True).to(device)
|
189 |
+
else:
|
190 |
+
# Standard timm model
|
191 |
+
model = timm.create_model(name, pretrained=True).to(device)
|
192 |
+
|
193 |
+
# Use a standard processor for timm
|
194 |
+
processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224")
|
195 |
+
|
196 |
+
# Set model to eval mode
|
197 |
+
model.eval()
|
198 |
+
logger.info("Model %s loaded (eval mode)", choice)
|
199 |
+
|
200 |
+
# Return model, processor, flag for HF, and class map
|
201 |
+
return model, processor, is_hf, class_map
|
202 |
+
|
203 |
+
# Add sidebar with clear sections
|
204 |
+
st.sidebar.title("Model Selection")
|
205 |
+
|
206 |
+
# Enhanced sidebar with custom model support
|
207 |
+
with st.sidebar:
|
208 |
+
# Add tabs for standard vs custom models
|
209 |
+
tab1, tab2 = st.tabs(["Standard Models", "Custom Finetuned Models"])
|
210 |
+
|
211 |
+
with tab1:
|
212 |
+
st.markdown("### ๐ Standard Models")
|
213 |
+
st.markdown("Choose from pre-trained models:")
|
214 |
+
m1 = model_selector("Active Model", default_source="hf")
|
215 |
+
|
216 |
+
# Button to apply standard model change
|
217 |
+
if st.button("๐ Set as Active Model", help="Click to use the selected model for analysis", key="std_model_btn"):
|
218 |
+
with st.spinner(f"Loading {m1}..."):
|
219 |
+
model, processor, is_hf_model, _ = load_model(m1)
|
220 |
+
st.session_state.model = model
|
221 |
+
st.session_state.processor = processor
|
222 |
+
st.session_state.is_hf_model = is_hf_model
|
223 |
+
st.session_state.active_model = m1
|
224 |
+
st.session_state.using_custom = False
|
225 |
+
st.session_state.class_map = None
|
226 |
+
st.success(f"โ
Model activated: {m1}")
|
227 |
+
|
228 |
+
with tab2:
|
229 |
+
st.markdown("### ๐ง Custom Finetuned Model")
|
230 |
+
st.markdown("Use your own finetuned model:")
|
231 |
+
|
232 |
+
# Select base architecture
|
233 |
+
custom_source = st.selectbox(
|
234 |
+
"Base architecture source",
|
235 |
+
["hf", "timm"],
|
236 |
+
key="custom_source"
|
237 |
+
)
|
238 |
+
|
239 |
+
if custom_source == "hf":
|
240 |
+
custom_base = st.selectbox(
|
241 |
+
"Hugging Face base model",
|
242 |
+
HF_MODELS,
|
243 |
+
key="custom_hf_base"
|
244 |
+
)
|
245 |
+
base_model = f"hf:{custom_base}"
|
246 |
+
else:
|
247 |
+
custom_base = st.selectbox(
|
248 |
+
"timm base model",
|
249 |
+
TIMM_MODELS,
|
250 |
+
key="custom_timm_base"
|
251 |
+
)
|
252 |
+
base_model = f"timm:{custom_base}"
|
253 |
+
|
254 |
+
# Upload checkpoint file
|
255 |
+
uploaded_checkpoint = st.file_uploader(
|
256 |
+
"Upload model checkpoint (.pth, .bin)",
|
257 |
+
type=["pth", "bin", "pt", "ckpt"],
|
258 |
+
help="Upload your finetuned model weights"
|
259 |
+
)
|
260 |
+
|
261 |
+
# Optional class mapping
|
262 |
+
custom_classes = st.number_input(
|
263 |
+
"Number of classes (if different from base model)",
|
264 |
+
min_value=0, max_value=1000, value=0,
|
265 |
+
help="Leave at 0 to use default classes from base model"
|
266 |
+
)
|
267 |
+
|
268 |
+
uploaded_labels = st.file_uploader(
|
269 |
+
"Upload class labels (optional JSON)",
|
270 |
+
type=["json"],
|
271 |
+
help="JSON file mapping class indices to labels: {\"0\": \"cat\", \"1\": \"dog\"}"
|
272 |
+
)
|
273 |
+
|
274 |
+
# Process label mapping
|
275 |
+
class_map = None
|
276 |
+
if uploaded_labels:
|
277 |
+
try:
|
278 |
+
import json
|
279 |
+
class_map = json.loads(uploaded_labels.getvalue().decode("utf-8"))
|
280 |
+
st.success(f"โ Loaded {len(class_map)} class labels")
|
281 |
+
except Exception as e:
|
282 |
+
st.error(f"Error loading class labels: {e}")
|
283 |
+
|
284 |
+
# Store uploaded file in session state if provided
|
285 |
+
if uploaded_checkpoint:
|
286 |
+
# Save to a temporary file
|
287 |
+
import tempfile
|
288 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.pth') as tmp_file:
|
289 |
+
tmp_file.write(uploaded_checkpoint.getvalue())
|
290 |
+
checkpoint_path = tmp_file.name
|
291 |
+
|
292 |
+
# Store in session state
|
293 |
+
if 'checkpoint_path' not in st.session_state:
|
294 |
+
st.session_state.checkpoint_path = checkpoint_path
|
295 |
+
|
296 |
+
st.success("โ Checkpoint ready to use")
|
297 |
+
|
298 |
+
# Button to apply custom model
|
299 |
+
if st.button("๐ Load Custom Model", help="Click to use your custom model"):
|
300 |
+
with st.spinner(f"Loading custom model based on {base_model}..."):
|
301 |
+
try:
|
302 |
+
num_classes = custom_classes if custom_classes > 0 else None
|
303 |
+
model, processor, is_hf_model, class_map = load_model(
|
304 |
+
base_model, checkpoint_path, class_map, num_classes
|
305 |
+
)
|
306 |
+
st.session_state.model = model
|
307 |
+
st.session_state.processor = processor
|
308 |
+
st.session_state.is_hf_model = is_hf_model
|
309 |
+
st.session_state.active_model = f"Custom {base_model}"
|
310 |
+
st.session_state.using_custom = True
|
311 |
+
st.session_state.class_map = class_map
|
312 |
+
st.success(f"โ
Custom model activated!")
|
313 |
+
except Exception as e:
|
314 |
+
st.error(f"Failed to load custom model: {str(e)}")
|
315 |
+
|
316 |
+
# Explanation section
|
317 |
+
st.markdown("---")
|
318 |
+
st.markdown("### โน๏ธ Model Types")
|
319 |
+
st.markdown("""
|
320 |
+
- **HF (Hugging Face)**: Vision Transformer models with standard interpretability
|
321 |
+
- **timm (PyTorch Image Models)**: Classical CNN architectures like ResNet, EfficientNet
|
322 |
+
|
323 |
+
*Custom models must match the base architecture's format.*
|
324 |
+
""")
|
325 |
+
|
326 |
+
# Initialize model and processor from session state
|
327 |
+
if 'active_model' not in st.session_state:
|
328 |
+
# First time loading - use default model
|
329 |
+
m1 = "hf:google/vit-base-patch16-224"
|
330 |
+
st.session_state.active_model = m1
|
331 |
+
model, processor, is_hf_model, _ = load_model(m1)
|
332 |
+
st.session_state.model = model
|
333 |
+
st.session_state.processor = processor
|
334 |
+
st.session_state.is_hf_model = is_hf_model
|
335 |
+
st.session_state.using_custom = False
|
336 |
+
st.session_state.class_map = None
|
337 |
+
else:
|
338 |
+
# Get from session state
|
339 |
+
model = st.session_state.model
|
340 |
+
processor = st.session_state.processor
|
341 |
+
is_hf_model = st.session_state.is_hf_model
|
342 |
+
|
343 |
+
# Initialize explainer
|
344 |
+
explainer = lime_image.LimeImageExplainer()
|
345 |
+
|
346 |
+
st.title("๐ง Vision Transformer Interpretability Dashboard")
|
347 |
+
st.write("Upload an image and explore explanations with **LIME** and **Uncertainty Analysis**.")
|
348 |
+
|
349 |
+
# Add a Feynman-style "How it works" explanation as a collapsible expander
|
350 |
+
with st.expander("How it works โ Feynman-style explanations (click to expand)", expanded=False):
|
351 |
+
st.markdown("""
|
352 |
+
## ๐ง Vision Transformer Interpretability โ Feynman-Style Explanations
|
353 |
+
|
354 |
+
### Why do we care about interpretability & uncertainty?
|
355 |
+
|
356 |
+
Imagine you ask a kid to identify whether a picture is a cat. They point to the fur, ears, maybe whiskers. But what if the kid always focused on shadows, or background trees, instead of the cat itself? We want two things:
|
357 |
+
|
358 |
+
1. **Why** did the model say โcatโ? What parts of the image made it decide so?
|
359 |
+
2. **How confident** is the model in that decision? Could small changes flip it?
|
360 |
+
|
361 |
+
Interpretable methods show us #1. Uncertainty estimation shows us #2. Together, they help us see not just *what* the model does, but *whether* we should trust it.
|
362 |
+
|
363 |
+
### Key techniques, in plain analogies
|
364 |
+
|
365 |
+
- **LIME (Local Interpretable Model-agnostic Explanations)**: For a single image & prediction, LIME perturbs (changes) parts of the image, watches how the prediction changes, and fits a simple model locally to understand which parts are most influential.
|
366 |
+
- Analogy: Like shining small spotlights on different parts of a stage during a play: you dim a section, see how the actorโs reaction changes. The parts whose dimming changes the reaction most are parts the actor depends on.
|
367 |
+
|
368 |
+
- **Uncertainty in LIME (multiple LIME runs)**: Because LIME uses randomness (perturbing patches), different runs can give different โimportantโ regions. Measuring how much they differ tells you how stable/fragile the explanation is.
|
369 |
+
- Analogy: If you ask several cooks what the dominant spice in a stew is and everyone agrees, you're confident; if opinions vary, your knowledge is shakier.
|
370 |
+
|
371 |
+
- **MC Dropout (Monte Carlo Dropout)**: Leave dropout on at inference time and run the model multiple times. The spread of predictions is a proxy for epistemic uncertainty.
|
372 |
+
- Analogy: Like a jury where each juror occasionally misses a sentence; if the verdict remains the same across many "faulty hearing" runs, trust it more.
|
373 |
+
|
374 |
+
- **Test-Time Augmentation (TTA) Uncertainty**: Apply small transforms (crops, flips) at inference and watch prediction variance. High variance โ brittle model.
|
375 |
+
- Analogy: Take photos under slightly different lighting/angles; if the label flips, the model may depend on superficial cues.
|
376 |
+
|
377 |
+
### How to read the visuals
|
378 |
|
379 |
+
- LIME highlights: bright / colored superpixels = influential regions. If background or artifacts light up, that's a red flag.
|
380 |
+
- LIME uncertainty heatmap: high std in a region means attributions are unstable there.
|
381 |
+
- MC Dropout / TTA histograms: narrow/tall peak = confident, wide/multi-modal = uncertain.
|
382 |
+
|
383 |
+
### Limitations & caveats
|
384 |
+
|
385 |
+
- Stable explanations can still be consistently wrong if the model learned a bias.
|
386 |
+
- MC Dropout is an approximation โ it helps but doesn't fully replace calibrated probabilistic methods.
|
387 |
+
- TTA shows input sensitivity, not full distributional shift robustness.
|
388 |
+
|
389 |
+
### Quick example (walkthrough)
|
390 |
+
|
391 |
+
1. Upload image โ model predicts label with some probability.
|
392 |
+
2. LIME finds important superpixels; multiple LIME runs give mean + std maps.
|
393 |
+
3. MC Dropout produces a histogram over runs; use it to judge epistemic uncertainty.
|
394 |
+
4. TTA shows sensitivity to small input changes.
|
395 |
+
|
396 |
+
### Practical tips
|
397 |
+
|
398 |
+
- Use explanation + uncertainty to guide active learning: label cases where the model is uncertain or explanations are unstable.
|
399 |
+
- For safety-critical systems, combine these visual signals with human review and stricter failure thresholds.
|
400 |
+
|
401 |
+
### Where to read more
|
402 |
+
|
403 |
+
- Christoph Molnar โ Interpretable Machine Learning (chapter on LIME): https://christophm.github.io/interpretable-ml-book/lime.html
|
404 |
+
- Ribeiro et al., "Why Should I Trust You?" (original LIME paper): https://homes.cs.washington.edu/~marcotcr/blog/lime/
|
405 |
+
- Zhang et al., "Why Should You Trust My Explanation?" (LIME reliability): https://arxiv.org/abs/1904.12991
|
406 |
+
- MC Dropout practical guide & notes: https://medium.com/@ciaranbench/monte-carlo-dropout-a-practical-guide-4b4dc18014b5
|
407 |
+
""")
|
408 |
+
|
409 |
+
# Compact one-page cheat-sheet (quick flags & checks)
|
410 |
+
with st.expander("Cheat-sheet โ Quick flags & warnings", expanded=False):
|
411 |
+
cheat_text = """
|
412 |
+
Quick checks when an explanation looks suspicious
|
413 |
+
|
414 |
+
- Red flag: LIME highlights background or repeated dataset artifacts (logos, borders) โ model may have learned spurious cues.
|
415 |
+
- Red flag: LIME attribution std is high in key regions โ explanation unstable; try different segmentations or more samples.
|
416 |
+
- Red flag: MC Dropout or TTA histograms are multi-modal or very wide โ model uncertain; consider human review or abstain.
|
417 |
+
- Quick fixes: increase dataset diversity, add regularization, try different segmentation_fn parameters, or collect more labels for uncertain cases.
|
418 |
+
|
419 |
+
One-line definitions
|
420 |
+
- LIME: perturb + fit simple local model to explain a single prediction.
|
421 |
+
- MC Dropout: enable dropout at inference and sample to estimate epistemic uncertainty.
|
422 |
+
- TTA: apply small input transforms at inference to measure sensitivity / aleatoric uncertainty.
|
423 |
+
|
424 |
+
Pro-tip: Use explanation + uncertainty to drive active learning: pick instances with high prediction uncertainty or unstable explanations for labeling.
|
425 |
"""
|
426 |
|
427 |
+
# Show the cheat-sheet as markdown
|
428 |
+
st.markdown(cheat_text)
|
429 |
+
|
430 |
+
# Download button for the cheat-sheet as plain text
|
431 |
+
try:
|
432 |
+
st.download_button(
|
433 |
+
label="Download cheat-sheet (.txt)",
|
434 |
+
data=cheat_text,
|
435 |
+
file_name="cheat_sheet.txt",
|
436 |
+
mime="text/plain",
|
437 |
+
)
|
438 |
+
except Exception:
|
439 |
+
# Streamlit may raise if download_button isn't available in some environments; ignore gracefully
|
440 |
+
pass
|
441 |
+
|
442 |
+
# Copy-to-clipboard button using a small HTML+JS snippet
|
443 |
+
escaped = html.escape(cheat_text)
|
444 |
+
copy_html = f"""
|
445 |
+
<div>
|
446 |
+
<button id='copy-btn' style='padding:6px 10px;border-radius:4px;'>Copy cheat-sheet</button>
|
447 |
+
<script>
|
448 |
+
const btn = document.getElementById('copy-btn');
|
449 |
+
btn.addEventListener('click', async () => {{
|
450 |
+
try {{
|
451 |
+
await navigator.clipboard.writeText(`{escaped}`);
|
452 |
+
btn.innerText = 'Copied!';
|
453 |
+
setTimeout(() => btn.innerText = 'Copy cheat-sheet', 1500);
|
454 |
+
}} catch (e) {{
|
455 |
+
btn.innerText = 'Copy failed';
|
456 |
+
}}
|
457 |
+
}});
|
458 |
+
</script>
|
459 |
+
</div>
|
460 |
+
"""
|
461 |
+
components.html(copy_html, height=70)
|
462 |
+
|
463 |
+
# Display active model clearly in the main panel
|
464 |
+
is_custom = st.session_state.get('using_custom', False)
|
465 |
+
custom_badge = " ๐ง Custom" if is_custom else ""
|
466 |
+
st.markdown(f"### Active Model: `{st.session_state.active_model}{custom_badge}`")
|
467 |
+
model_type = "Hugging Face Transformer" if is_hf_model else "timm CNN Architecture"
|
468 |
+
st.caption(f"Model type: {model_type}")
|
469 |
+
|
470 |
+
# ---------------- Helpers ----------------
|
471 |
+
def classifier_fn(images_batch):
|
472 |
+
# Use current model/processor from session state
|
473 |
+
inputs = processor(images=[Image.fromarray(x.astype(np.uint8)) for x in images_batch],
|
474 |
+
return_tensors="pt").to(device)
|
475 |
+
with torch.no_grad():
|
476 |
+
if is_hf_model:
|
477 |
+
outputs = model(**inputs)
|
478 |
+
logits = outputs.logits
|
479 |
+
else:
|
480 |
+
x = inputs['pixel_values']
|
481 |
+
logits = model(x)
|
482 |
+
probs = torch.softmax(logits, dim=-1).cpu().numpy()
|
483 |
+
return probs
|
484 |
+
|
485 |
+
def predict_probs(pil_img):
|
486 |
+
# Use current model/processor from session state
|
487 |
+
inputs = processor(images=pil_img, return_tensors="pt").to(device)
|
488 |
+
with torch.no_grad():
|
489 |
+
if is_hf_model:
|
490 |
+
outputs = model(**inputs)
|
491 |
+
logits = outputs.logits
|
492 |
+
else:
|
493 |
+
x = inputs['pixel_values']
|
494 |
+
logits = model(x)
|
495 |
+
probs = torch.softmax(logits, dim=-1).cpu().numpy()[0]
|
496 |
+
return probs
|
497 |
+
|
498 |
+
# ---------------- Upload ----------------
|
499 |
+
uploaded = st.file_uploader("Upload an image", type=["png","jpg","jpeg"])
|
500 |
+
if uploaded:
|
501 |
+
img = Image.open(uploaded).convert("RGB").resize((224,224))
|
502 |
+
logger.info("Uploaded image received (size=%s)", img.size)
|
503 |
+
st.image(img, caption="Uploaded image", use_container_width=True)
|
504 |
+
|
505 |
+
# ---------------- Prediction ----------------
|
506 |
+
probs = predict_probs(img)
|
507 |
+
pred_idx = int(np.argmax(probs))
|
508 |
+
|
509 |
+
# Get label - handle models differently based on source
|
510 |
+
if is_hf_model:
|
511 |
+
# Use model's config.id2label if available
|
512 |
+
pred_label = model.config.id2label[pred_idx]
|
513 |
+
elif st.session_state.get('class_map'):
|
514 |
+
# Use custom class map if provided (access defensively)
|
515 |
+
_class_map = st.session_state.get('class_map')
|
516 |
+
pred_label = _class_map.get(str(pred_idx), f"Class {pred_idx}") if _class_map is not None else f"Class {pred_idx}"
|
517 |
+
else:
|
518 |
+
# For timm models without labels
|
519 |
+
pred_label = f"Class {pred_idx}"
|
520 |
+
|
521 |
+
pred_prob = float(probs[pred_idx])
|
522 |
+
logger.info("Prediction: %s (%.3f)", pred_label, pred_prob)
|
523 |
+
|
524 |
+
st.subheader("๐ฎ Prediction")
|
525 |
+
st.write(f"**Top-1:** {pred_label} ({pred_prob:.3f})")
|
526 |
+
|
527 |
+
if not is_hf_model and not st.session_state.get('class_map'):
|
528 |
+
st.info("โน๏ธ Using model without class names. Upload a class mapping in the sidebar for friendly labels.")
|
529 |
+
|
530 |
+
# ---------------- LIME ----------------
|
531 |
+
st.subheader("๐ LIME Attribution")
|
532 |
+
st.markdown("""
|
533 |
+
**Local Interpretable Model-agnostic Explanations (LIME)** is a technique that approximates how a complex model (like ViT or ResNet) makes decisions for a specific input by creating a simpler, interpretable model around it.
|
534 |
+
It perturbs the image into segments and sees which ones most influence the prediction, revealing what the model "sees" as important.
|
535 |
+
This is crucial for debugging biases or understanding if the model focuses on relevant features vs. artifacts.
|
536 |
+
""")
|
537 |
+
img_np = np.array(img)
|
538 |
+
|
539 |
+
with st.spinner("Generating LIME explanation..."):
|
540 |
+
exp = explainer.explain_instance(
|
541 |
+
img_np, classifier_fn=classifier_fn, top_labels=1, num_samples=1000,
|
542 |
+
segmentation_fn=lambda x: slic(x, n_segments=60, compactness=9, start_label=0)
|
543 |
+
)
|
544 |
+
temp, mask = exp.get_image_and_mask(pred_idx, positive_only=True,
|
545 |
+
num_features=8, hide_rest=False)
|
546 |
+
lime_img = mark_boundaries(temp/255.0, mask)
|
547 |
+
|
548 |
+
st.image(lime_img, caption=f"LIME highlights regions important for '{pred_label}'")
|
549 |
+
st.info("""
|
550 |
+
**How to read:** Bright (or colored) segments show areas the model relied on most for its prediction โ these are the "superpixels" that, when altered, change the output the most.
|
551 |
+
Green/red overlays often indicate positive/negative contributions. If irrelevant background or edges light up, it might signal the model learned spurious correlations (e.g., from training data artifacts).
|
552 |
+
Furthermore, this builds trust by showing if AI decisions align with human intuition.
|
553 |
+
""")
|
554 |
+
|
555 |
+
# ---------------- LIME Uncertainty ----------------
|
556 |
+
st.subheader("๐ LIME Attribution Uncertainty")
|
557 |
+
st.markdown("""
|
558 |
+
Uncertainty in explanations arises because LIME is stochastic โ it samples perturbations randomly. By running LIME multiple times, we can measure variability in attributions,
|
559 |
+
highlighting if the model's reasoning is consistent or fragile for this image. High variability suggests the explanation (and thus model confidence) isn't robust.
|
560 |
+
""")
|
561 |
+
logger.info("Starting LIME uncertainty runs (n=5)")
|
562 |
+
maps = []
|
563 |
+
for i in range(5):
|
564 |
+
logger.debug("LIME run %d", i+1)
|
565 |
+
exp = explainer.explain_instance(
|
566 |
+
img_np, classifier_fn=classifier_fn, top_labels=1, num_samples=500,
|
567 |
+
segmentation_fn=lambda x: slic(x, n_segments=60, compactness=9, start_label=0)
|
568 |
+
)
|
569 |
+
local_exp = dict(exp.local_exp)[pred_idx]
|
570 |
+
segments = exp.segments
|
571 |
+
attr_map = np.zeros(segments.shape)
|
572 |
+
for seg_id, weight in local_exp:
|
573 |
+
attr_map[segments == seg_id] = weight
|
574 |
+
maps.append(attr_map)
|
575 |
+
maps = np.stack(maps)
|
576 |
+
mean_attr, std_attr = maps.mean(0), maps.std(0)
|
577 |
+
|
578 |
+
fig, ax = plt.subplots(1,2, figsize=(8,4))
|
579 |
+
im1 = ax[0].imshow(mean_attr, cmap="jet"); ax[0].set_title("Mean attribution"); ax[0].axis("off")
|
580 |
+
plt.colorbar(im1, ax=ax[0], fraction=0.046)
|
581 |
+
im2 = ax[1].imshow(std_attr, cmap="hot"); ax[1].set_title("Attribution std (uncertainty)"); ax[1].axis("off")
|
582 |
+
plt.colorbar(im2, ax=ax[1], fraction=0.046)
|
583 |
+
st.pyplot(fig)
|
584 |
+
st.info("""
|
585 |
+
**How to read:** The left heatmap shows average importance across runs (hotter = more influential). The right shows standard deviation โ high std (yellow/red) means unstable explanations for those regions.
|
586 |
+
If uncertainty is high in key areas, the model might overfit or need more diverse training data. This helps ML practitioners quantify explanation reliability.
|
587 |
+
""")
|
588 |
+
logger.info("Completed LIME uncertainty runs")
|
589 |
+
|
590 |
+
# ---------------- MC Dropout ----------------
|
591 |
+
st.subheader("๐ฒ MC Dropout Uncertainty")
|
592 |
+
st.markdown("""
|
593 |
+
Monte Carlo (MC) Dropout treats dropout layers (normally off during inference) as a Bayesian approximation to estimate epistemic uncertainty โ how much the model "doesn't know" due to limited training.
|
594 |
+
By enabling dropout and sampling predictions multiple times, we see if the model consistently agrees on the class or wavers, indicating potential unreliability.
|
595 |
+
""")
|
596 |
+
logger.info("Starting MC Dropout sampling")
|
597 |
+
model.train() # enable dropout
|
598 |
+
mc_preds = []
|
599 |
+
with torch.no_grad():
|
600 |
+
for _ in range(30):
|
601 |
+
probs_mc = predict_probs(img)
|
602 |
+
mc_preds.append(probs_mc)
|
603 |
+
model.eval()
|
604 |
+
mc_preds = np.stack(mc_preds)
|
605 |
+
mc_mean = mc_preds.mean(0)
|
606 |
+
mc_top = mc_mean.argmax()
|
607 |
+
if is_hf_model:
|
608 |
+
mc_label = model.config.id2label[mc_top]
|
609 |
+
elif st.session_state.get('class_map'):
|
610 |
+
_class_map = st.session_state.get('class_map')
|
611 |
+
mc_label = _class_map.get(str(mc_top), f"Class {mc_top}") if _class_map is not None else f"Class {mc_top}"
|
612 |
+
else:
|
613 |
+
mc_label = f"Class {mc_top}"
|
614 |
+
p = mc_preds[:, mc_top]
|
615 |
+
|
616 |
+
fig, ax = plt.subplots()
|
617 |
+
ax.hist(p, bins=15, color="C0")
|
618 |
+
ax.set_title(f"MC Dropout: p({mc_label}) across samples")
|
619 |
+
st.pyplot(fig)
|
620 |
+
st.info("""
|
621 |
+
**How to read:** This histogram shows probability distributions for the top class across 30 samples. A narrow, peaked distribution means stable confidence (low uncertainty).
|
622 |
+
A wide spread or multiple modes suggests the model is unsure, possibly due to out-of-distribution inputs. For devs, this flags cases needing human review; it highlights risky predictions.
|
623 |
+
""")
|
624 |
+
logger.info("Completed MC Dropout: top=%s", mc_label)
|
625 |
+
|
626 |
+
# ---------------- Test-Time Augmentation (TTA) Uncertainty ----------------
|
627 |
+
st.subheader("๐ Test-Time Augmentation (TTA) Uncertainty")
|
628 |
+
st.markdown("""
|
629 |
+
Test-Time Augmentation (TTA) applies random transformations (crops, flips) at inference to probe aleatoric uncertainty โ noise inherent in the input or model.
|
630 |
+
If predictions vary wildly under small changes, the model relies on brittle features, revealing data-related issues rather than model knowledge gaps.
|
631 |
+
""")
|
632 |
+
logger.info("Starting TTA sampling")
|
633 |
+
tta_tfms = T.Compose([T.Resize(256), T.RandomResizedCrop(224, scale=(0.9,1.0)), T.RandomHorizontalFlip(p=0.5)])
|
634 |
+
tta_preds = []
|
635 |
+
with torch.no_grad():
|
636 |
+
for _ in range(20):
|
637 |
+
aug = tta_tfms(img)
|
638 |
+
probs_tta = predict_probs(aug)
|
639 |
+
tta_preds.append(probs_tta)
|
640 |
+
tta_preds = np.stack(tta_preds)
|
641 |
+
tta_mean = tta_preds.mean(0)
|
642 |
+
tta_top = tta_mean.argmax()
|
643 |
+
if is_hf_model:
|
644 |
+
tta_label = model.config.id2label[tta_top]
|
645 |
+
elif st.session_state.get('class_map'):
|
646 |
+
_class_map = st.session_state.get('class_map')
|
647 |
+
tta_label = _class_map.get(str(tta_top), f"Class {tta_top}") if _class_map is not None else f"Class {tta_top}"
|
648 |
+
else:
|
649 |
+
tta_label = f"Class {tta_top}"
|
650 |
+
p_tta = tta_preds[:, tta_top]
|
651 |
+
|
652 |
+
fig, ax = plt.subplots()
|
653 |
+
ax.hist(p_tta, bins=15, color="C1")
|
654 |
+
ax.set_title(f"TTA: p({tta_label}) across augmentations")
|
655 |
+
st.pyplot(fig)
|
656 |
+
st.info("""
|
657 |
+
**How to read:** Similar to MC Dropout, but focused on input variations. Low variance means the prediction is robust to perturbations (good sign). High variance indicates sensitivity to details like lighting/position,
|
658 |
+
common in overfitted models. Use this to assess if your AI system handles real-world variability well.
|
659 |
+
""")
|
660 |
+
logger.info("Completed TTA: top=%s", tta_label)
|
661 |
+
# ---------------- Summary ----------------
|