boning123's picture
Update agent.py
2950dbc verified
raw
history blame
1.48 kB
from llama_cpp import Llama
from duckduckgo_search import DDGS
from e2b import Sandbox
import gradio as gr
llm = Llama(model_path="models/Sam-reason-A1.Q4_K_S.gguf", n_ctx=2048)
def search_tool(q):
with DDGS() as ddgs:
results = ddgs.text(q)
return "\n".join([r["title"] + ": " + r["href"] for r in results[:3]])
def calc_tool(expr):
try: return str(eval(expr))
except Exception as e: return f"Math error: {e}"
def run_tool(command):
with Sandbox(template="base") as sb:
out = sb.run(command)
return out.stdout or out.stderr or "No output."
tools = {
"search": search_tool,
"calc": calc_tool,
"run": run_tool
}
def parse_tools(text):
for key in tools:
if f"<tool:{key}>" in text:
start = text.find(f"<tool:{key}>") + len(f"<tool:{key}>")
end = text.find(f"</tool:{key}>")
arg = text[start:end].strip()
return tools[key](arg)
return None
def agent_chat(user_input, history=[]):
history.append({"role": "user", "content": user_input})
prompt = "\n".join([f"{m['role']}: {m['content']}" for m in history])
output = llm(prompt=prompt, stop=["user:", "system:"], echo=False)
response = output["choices"][0]["text"].strip()
result = parse_tools(response)
if result: response += f"\n🔧 Tool Output:\n{result}"
history.append({"role": "assistant", "content": response})
return response
gr.ChatInterface(fn=agent_chat).launch()