File size: 45,783 Bytes
65573e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
import json, os, zipfile, io, tempfile, requests
from datasets import load_dataset
import sys
import random
from collections import defaultdict, Counter
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from collections import Counter
import numpy as np
from datasets import load_dataset
from tqdm import tqdm
import collections

# sys.stdout = open("logs/train.txt", "w", encoding="utf-8")
# sys.stderr = sys.stdout

# 2️⃣ Clean and standardize JSON files - PRESERVE ALL FIELDS
def clean_json_file(infile, outfile):
    data = []
    with open(infile, "r", encoding="utf-8") as f:
        for line in f:
            try:
                obj = json.loads(line.strip())
                eng = obj.get("english word") or obj.get("english_word")
                native = obj.get("native word") or obj.get("native_word")
                
                # Strip whitespace and filter out empty strings
                if eng:
                    eng = eng.strip()
                if native:
                    native = native.strip()
                
                # Only keep if both fields are non-empty after stripping
                if eng and native:
                    # Preserve all fields
                    score = obj.get("score", None)
                    if score is None:
                        score = float("nan")
                    cleaned_obj = {
                        "english word": eng,
                        "native word": native,
                        "source": obj.get("source", "Unknown"),
                        "score": score,
                        "unique_identifier": obj.get("unique_identifier", None)
                    }
                    data.append(cleaned_obj)
            except Exception:
                continue
    
    with open(outfile, "w", encoding="utf-8") as f:
        for entry in data:
            f.write(json.dumps(entry, ensure_ascii=False) + "\n")
    print(f"βœ… Cleaned {len(data)} entries in {os.path.basename(infile)}")


def sample_transliteration_dataset(full_dataset, sample_size=100000, top_freq_ratio=0.3, seed=42):
    """
    Sample a subset of a transliteration dataset.
    
    Parameters:
    - full_dataset: list of dicts, each with 'english word' and 'native word'
    - sample_size: total number of samples to return
    - top_freq_ratio: fraction of samples from top frequent words
    - seed: random seed for reproducibility
    
    Returns:
    - sampled_dataset: list of dicts
    """
    random.seed(seed)
    
    # -----------------------------
    # 1️⃣ Top frequent words
    # -----------------------------
    words = [item['english word'] for item in full_dataset]
    freq = Counter(words)
    
    sorted_items = sorted(full_dataset, key=lambda x: freq[x['english word']], reverse=True)
    num_top = int(sample_size * top_freq_ratio)
    top_items = sorted_items[:num_top]
    
    # Remaining items for stratified sampling
    remaining_size = sample_size - num_top
    remaining_items = sorted_items[num_top:]
    
    # -----------------------------
    # 2️⃣ Stratified by word length
    # -----------------------------
    length_groups = defaultdict(list)
    for item in remaining_items:
        length_groups[len(item['english word'])].append(item)
    
    sampled_remaining = []
    total_remaining_items = sum(len(v) for v in length_groups.values())
    
    for length, items in length_groups.items():
        n = int(remaining_size * len(items) / total_remaining_items)
        n = min(n, len(items))
        sampled_remaining.extend(random.sample(items, n))
    
    # -----------------------------
    # 3️⃣ Combine and shuffle
    # -----------------------------
    sampled_dataset = top_items + sampled_remaining
    if len(sampled_dataset) > sample_size:
        sampled_dataset = random.sample(sampled_dataset, sample_size)
    
    random.shuffle(sampled_dataset)
    
    return sampled_dataset

# 4️⃣ DATA ANALYSIS FUNCTION
def analyze_dataset_statistics(dataset_split, split_name="train"):
    """Analyze dataset statistics by source and length"""
    print(f"\n{'='*70}")
    print(f"DATASET STATISTICS - {split_name.upper()} SPLIT")
    print(f"{'='*70}\n")
    
    data_list = list(dataset_split)
    print(f"Total samples: {len(data_list):,}\n")
    
    # Group by source
    source_stats = defaultdict(lambda: {
        'count': 0,
        'english_lengths': [],
        'native_lengths': [],
    })
    
    for item in data_list:
        english_word = item.get('english word', '')
        native_word = item.get('native word', '')
        source = item.get('source', 'Unknown')
        
        source_stats[source]['count'] += 1
        source_stats[source]['english_lengths'].append(len(english_word))
        source_stats[source]['native_lengths'].append(len(native_word))
    
    # Compute statistics per source
    stats_list = []
    for source, data in sorted(source_stats.items(), key=lambda x: x[1]['count'], reverse=True):
        eng_lengths = data['english_lengths']
        nat_lengths = data['native_lengths']
        
        if eng_lengths and nat_lengths:
            stats_list.append({
                'Source': source,
                'Count': data['count'],
                'Percentage': f"{100 * data['count'] / len(data_list):.2f}%",
                'Eng_Min': min(eng_lengths),
                'Eng_Max': max(eng_lengths),
                'Eng_Mean': f"{np.mean(eng_lengths):.2f}",
                'Eng_Median': f"{np.median(eng_lengths):.1f}",
                'Nat_Min': min(nat_lengths),
                'Nat_Max': max(nat_lengths),
                'Nat_Mean': f"{np.mean(nat_lengths):.2f}",
                'Nat_Median': f"{np.median(nat_lengths):.1f}",
            })
    
    stats_df = pd.DataFrame(stats_list)
    print("STATISTICS BY SOURCE:")
    print(stats_df.to_string(index=False))
    print()
    
    # Overall length distribution
    all_eng_lengths = [len(item.get('english word', '')) for item in data_list]
    all_nat_lengths = [len(item.get('native word', '')) for item in data_list]
    
    print("OVERALL LENGTH DISTRIBUTION:")
    print(f"English - Min: {min(all_eng_lengths)}, Max: {max(all_eng_lengths)}, "
          f"Mean: {np.mean(all_eng_lengths):.2f}, Median: {np.median(all_eng_lengths):.1f}")
    print(f"Native  - Min: {min(all_nat_lengths)}, Max: {max(all_nat_lengths)}, "
          f"Mean: {np.mean(all_nat_lengths):.2f}, Median: {np.median(all_nat_lengths):.1f}")
    print()
    
    # Length buckets
    print("LENGTH DISTRIBUTION (English words):")
    length_buckets = {
        '1-3': 0, '4-6': 0, '7-10': 0, '11-15': 0, '16-20': 0, '21+': 0
    }
    
    for length in all_eng_lengths:
        if length <= 3:
            length_buckets['1-3'] += 1
        elif length <= 6:
            length_buckets['4-6'] += 1
        elif length <= 10:
            length_buckets['7-10'] += 1
        elif length <= 15:
            length_buckets['11-15'] += 1
        elif length <= 20:
            length_buckets['16-20'] += 1
        else:
            length_buckets['21+'] += 1
    
    for bucket, count in length_buckets.items():
        print(f"  {bucket:6s}: {count:6,} ({100*count/len(data_list):5.2f}%)")
    
    print(f"\n{'='*70}\n")
    
    return stats_df



# =======================
# 1. CHARACTER-LEVEL TOKENIZER
# =======================
class CharTokenizer:
    """Character-level tokenizer for transliteration"""
    def __init__(self, vocab=None):
        self.pad_token = '<PAD>'
        self.sos_token = '<SOS>'
        self.eos_token = '<EOS>'
        self.unk_token = '<UNK>'

        if vocab is None:
            self.char2idx = {
                self.pad_token: 0,
                self.sos_token: 1,
                self.eos_token: 2,
                self.unk_token: 3
            }
            self.idx2char = {v: k for k, v in self.char2idx.items()}
        else:
            self.char2idx = vocab
            self.idx2char = {v: k for k, v in self.char2idx.items()}

    def fit(self, texts):
        """Build vocabulary from texts"""
        char_counts = Counter()
        for text in texts:
            char_counts.update(text)

        # Add characters to vocabulary (sorted for consistency)
        for char, _ in sorted(char_counts.items()):
            if char not in self.char2idx:
                self.char2idx[char] = len(self.char2idx)

        self.idx2char = {v: k for k, v in self.char2idx.items()}
        return self

    def encode(self, text, add_special_tokens=True):
        """Convert text to indices"""
        if add_special_tokens:
            indices = [self.char2idx[self.sos_token]]
            indices.extend([self.char2idx.get(c, self.char2idx[self.unk_token]) for c in text])
            indices.append(self.char2idx[self.eos_token])
        else:
            indices = [self.char2idx.get(c, self.char2idx[self.unk_token]) for c in text]
        return indices

    def decode(self, indices, skip_special_tokens=True):
        """Convert indices back to text"""
        chars = []
        for idx in indices:
            # handle both ints and tensors
            if isinstance(idx, torch.Tensor):
                idx = idx.item()
            char = self.idx2char.get(idx, self.unk_token)
            if skip_special_tokens and char in [self.pad_token, self.sos_token, self.eos_token]:
                continue
            chars.append(char)
        return ''.join(chars)

    def __len__(self):
        return len(self.char2idx)


# =======================
# 2. DATASET CLASS
# =======================
class TransliterationDataset(Dataset):
    """Dataset for transliteration task"""
    def __init__(self, data, src_tokenizer, tgt_tokenizer, max_len=50):
        # data: an iterable of dict-like objects with 'english word' and 'native word'
        self.data = data
        self.src_tokenizer = src_tokenizer
        self.tgt_tokenizer = tgt_tokenizer
        self.max_len = max_len

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        item = self.data[idx]
        src = item['english word']
        tgt = item['native word']

        # Encode
        src_ids = self.src_tokenizer.encode(src)
        tgt_ids = self.tgt_tokenizer.encode(tgt)

        # Truncate if needed
        src_ids = src_ids[:self.max_len]
        tgt_ids = tgt_ids[:self.max_len]

        return {
            'src_ids': torch.tensor(src_ids, dtype=torch.long),
            'tgt_ids': torch.tensor(tgt_ids, dtype=torch.long),
            'src_text': src,
            'tgt_text': tgt
        }


def collate_fn(batch):
    """Custom collate function to pad sequences"""
    src_ids = [item['src_ids'] for item in batch]
    tgt_ids = [item['tgt_ids'] for item in batch]

    # Pad sequences
    src_ids = nn.utils.rnn.pad_sequence(src_ids, batch_first=True, padding_value=0)
    tgt_ids = nn.utils.rnn.pad_sequence(tgt_ids, batch_first=True, padding_value=0)

    return {
        'src_ids': src_ids,
        'tgt_ids': tgt_ids,
        'src_text': [item['src_text'] for item in batch],
        'tgt_text': [item['tgt_text'] for item in batch]
    }


# =======================
# 3. LSTM ENCODER-DECODER WITH ATTENTION
# =======================
class Encoder(nn.Module):
    """LSTM Encoder"""
    def __init__(self, vocab_size, embed_dim, hidden_dim, num_layers=2, dropout=0.3):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, embed_dim, padding_idx=0)
        self.lstm = nn.LSTM(embed_dim, hidden_dim, num_layers,
                           batch_first=True, dropout=dropout if num_layers > 1 else 0,
                           bidirectional=True)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        embedded = self.dropout(self.embedding(x))
        outputs, (hidden, cell) = self.lstm(embedded)
        return outputs, hidden, cell


class Attention(nn.Module):
    """Bahdanau Attention Mechanism"""
    def __init__(self, dec_hidden_dim, enc_hidden_dim):
        super().__init__()
        self.attn = nn.Linear(dec_hidden_dim + enc_hidden_dim*2, dec_hidden_dim)
        self.v = nn.Linear(dec_hidden_dim, 1, bias=False)

    def forward(self, hidden, encoder_outputs, mask=None):
        batch_size = encoder_outputs.shape[0]
        src_len = encoder_outputs.shape[1]

        hidden = hidden.unsqueeze(1).repeat(1, src_len, 1)
        energy = torch.tanh(self.attn(torch.cat((hidden, encoder_outputs), dim=2)))
        attention = self.v(energy).squeeze(2)

        if mask is not None:
            attention = attention.masked_fill(mask == 0, -1e10)

        attn_weights = torch.softmax(attention, dim=1)
        context = torch.bmm(attn_weights.unsqueeze(1), encoder_outputs)

        return context.squeeze(1), attn_weights.squeeze(1)


class Decoder(nn.Module):
    """LSTM Decoder with Attention"""
    def __init__(self, vocab_size, embed_dim, enc_hidden_dim, dec_hidden_dim, num_layers=2, dropout=0.3):
        super().__init__()
        self.vocab_size = vocab_size
        self.embedding = nn.Embedding(vocab_size, embed_dim, padding_idx=0)
        self.attention = Attention(dec_hidden_dim, enc_hidden_dim)
        self.lstm = nn.LSTM(embed_dim + enc_hidden_dim*2, dec_hidden_dim, num_layers,
                           batch_first=True, dropout=dropout if num_layers > 1 else 0)
        self.fc_out = nn.Linear(dec_hidden_dim + enc_hidden_dim*2 + embed_dim, vocab_size)
        self.dropout = nn.Dropout(dropout)
        self.enc_hidden_dim = enc_hidden_dim
        self.dec_hidden_dim = dec_hidden_dim

    def forward(self, input, hidden, cell, encoder_outputs, mask=None):
        input = input.unsqueeze(1)
        embedded = self.dropout(self.embedding(input))

        context, attn_weights = self.attention(hidden[-1], encoder_outputs, mask)
        context = context.unsqueeze(1)
        rnn_input = torch.cat((embedded, context), dim=2)

        output, (hidden, cell) = self.lstm(rnn_input, (hidden, cell))
        output = output.squeeze(1)
        embedded = embedded.squeeze(1)
        context = context.squeeze(1)

        prediction = self.fc_out(torch.cat((output, context, embedded), dim=1))
        return prediction, hidden, cell, attn_weights


class Seq2Seq(nn.Module):
    """Complete Sequence-to-Sequence Model"""

    def beam_search_decode(self, src, src_tokenizer, tgt_tokenizer, max_len=50, beam_width=3):
        """Beam search decoding for Seq2Seq"""
        self.eval()
        with torch.no_grad():
            if isinstance(src, str):
                src_ids = src_tokenizer.encode(src)
                src_tensor = torch.tensor(src_ids, dtype=torch.long).unsqueeze(0).to(self.device)
            else:
                src_tensor = src.to(self.device)

            encoder_outputs, hidden, cell = self.encoder(src_tensor)
            num_layers = self.decoder.lstm.num_layers

            hidden = hidden.view(num_layers, 2, 1, -1)
            hidden = torch.cat((hidden[:, 0], hidden[:, 1]), dim=2)
            cell = cell.view(num_layers, 2, 1, -1)
            cell = torch.cat((cell[:, 0], cell[:, 1]), dim=2)

            hidden = self.hidden_projection(hidden)
            cell = self.cell_projection(cell)

            mask = self.create_mask(src_tensor)

            start_token = tgt_tokenizer.char2idx[tgt_tokenizer.sos_token]
            beams = [(torch.tensor([start_token], device=self.device), 0.0, hidden, cell)]
            completed_sequences = []

            for _ in range(max_len):
                new_beams = []
                for seq, log_prob, h, c in beams:
                    input_token = seq[-1].unsqueeze(0)
                    output, h_new, c_new, _ = self.decoder(input_token, h, c, encoder_outputs, mask)
                    probs = torch.log_softmax(output, dim=1).squeeze(0)
                    topk_probs, topk_idx = probs.topk(beam_width)

                    for prob, idx in zip(topk_probs, topk_idx):
                        new_seq = torch.cat([seq, idx.unsqueeze(0)])
                        new_log_prob = log_prob + prob.item()
                        new_beams.append((new_seq, new_log_prob, h_new, c_new))

                new_beams = sorted(new_beams, key=lambda x: x[1], reverse=True)[:beam_width]

                beams = []
                for seq, log_prob, h, c in new_beams:
                    if seq[-1].item() == tgt_tokenizer.char2idx[tgt_tokenizer.eos_token]:
                        completed_sequences.append((seq, log_prob))
                    else:
                        beams.append((seq, log_prob, h, c))

                if not beams:
                    break

            if len(completed_sequences) == 0:
                completed_sequences = beams

            best_seq = max(completed_sequences, key=lambda x: x[1])[0]
            return tgt_tokenizer.decode(best_seq[1:], skip_special_tokens=True)

    def __init__(self, encoder, decoder, device):
        super().__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.device = device

        enc_hidden_dim = encoder.lstm.hidden_size
        dec_hidden_dim = decoder.dec_hidden_dim
        num_layers = decoder.lstm.num_layers

        self.hidden_projection = nn.Linear(enc_hidden_dim * 2, dec_hidden_dim)
        self.cell_projection = nn.Linear(enc_hidden_dim * 2, dec_hidden_dim)

    def create_mask(self, src):
        mask = (src != 0)
        return mask

    def forward(self, src, tgt, teacher_forcing_ratio=0.5):
        batch_size = src.shape[0]
        tgt_len = tgt.shape[1]
        tgt_vocab_size = self.decoder.vocab_size

        outputs = torch.zeros(batch_size, tgt_len, tgt_vocab_size).to(self.device)

        encoder_outputs, hidden, cell = self.encoder(src)

        num_layers = self.decoder.lstm.num_layers
        hidden = hidden.view(num_layers, 2, batch_size, -1)
        cell = cell.view(num_layers, 2, batch_size, -1)

        hidden = torch.cat((hidden[:, 0], hidden[:, 1]), dim=2)
        cell = torch.cat((cell[:, 0], cell[:, 1]), dim=2)

        hidden = self.hidden_projection(hidden)
        cell = self.cell_projection(cell)

        mask = self.create_mask(src)
        input = tgt[:, 0]

        for t in range(1, tgt_len):
            output, hidden, cell, attn_weights = self.decoder(
                input, hidden, cell, encoder_outputs, mask
            )
            outputs[:, t] = output

            teacher_force = torch.rand(1).item() < teacher_forcing_ratio
            top1 = output.argmax(1)
            input = tgt[:, t] if teacher_force else top1

        return outputs

    def translate(self, src, src_tokenizer, tgt_tokenizer, max_len=50):
        """Translate a single source sequence (greedy decoding)"""
        self.eval()
        with torch.no_grad():
            if isinstance(src, str):
                src_ids = src_tokenizer.encode(src)
                src_tensor = torch.tensor(src_ids, dtype=torch.long).unsqueeze(0).to(self.device)
            else:
                src_tensor = src.to(self.device)

            encoder_outputs, hidden, cell = self.encoder(src_tensor)

            num_layers = self.decoder.lstm.num_layers
            hidden = hidden.view(num_layers, 2, 1, -1)
            hidden = torch.cat((hidden[:, 0], hidden[:, 1]), dim=2)
            cell = cell.view(num_layers, 2, 1, -1)
            cell = torch.cat((cell[:, 0], cell[:, 1]), dim=2)

            hidden = self.hidden_projection(hidden)
            cell = self.cell_projection(cell)

            mask = self.create_mask(src_tensor)
            input = torch.tensor([tgt_tokenizer.char2idx[tgt_tokenizer.sos_token]]).to(self.device)

            outputs = []
            for _ in range(max_len):
                output, hidden, cell, _ = self.decoder(input, hidden, cell, encoder_outputs, mask)
                top1 = output.argmax(1)
                outputs.append(top1.item())

                if top1.item() == tgt_tokenizer.char2idx[tgt_tokenizer.eos_token]:
                    break

                input = top1

            return tgt_tokenizer.decode(outputs, skip_special_tokens=True)


# =======================
# 4. TRAINING / EVAL HELPERS
# =======================
def train_epoch(model, dataloader, optimizer, criterion, device, clip=1.0):
    model.train()
    epoch_loss = 0

    for batch in dataloader:
        src = batch['src_ids'].to(device)
        tgt = batch['tgt_ids'].to(device)

        optimizer.zero_grad()
        output = model(src, tgt)
        output = output[:, 1:].reshape(-1, output.shape[-1])
        tgt_flat = tgt[:, 1:].reshape(-1)

        loss = criterion(output, tgt_flat)
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
        optimizer.step()
        epoch_loss += loss.item()

    return epoch_loss / len(dataloader)


def char_overlap_f1(pred, true):
    """Character-level overlap F1 per word"""
    pred_counts = collections.Counter(pred)
    true_counts = collections.Counter(true)
    overlap = sum((pred_counts & true_counts).values())
    if overlap == 0:
        return 0.0
    precision = overlap / len(pred)
    recall = overlap / len(true)
    return 2 * precision * recall / (precision + recall)


def evaluate(model, dataloader, criterion, device):
    model.eval()
    epoch_loss = 0

    with torch.no_grad():
        for batch in dataloader:
            src = batch['src_ids'].to(device)
            tgt = batch['tgt_ids'].to(device)

            # No teacher forcing
            output = model(src, tgt, teacher_forcing_ratio=0.0)
            output = output[:, 1:].reshape(-1, output.shape[-1])
            tgt_flat = tgt[:, 1:].reshape(-1)

            loss = criterion(output, tgt_flat)
            epoch_loss += loss.item()

    return epoch_loss / len(dataloader)


# =======================
# 5. ENHANCED EVALUATION WITH FULL DETAILS
# =======================
def evaluate_with_full_details(model, dataloader, src_tokenizer, tgt_tokenizer, 
                               device, output_file='test_results.jsonl',
                               decoding="greedy", beam_width=3, max_samples=None):
    """
    Evaluate model and save detailed results with all metadata
    """
    model.eval()
    results = []
    word_correct = 0
    char_correct = 0
    char_total = 0
    
    print(f"\n{'='*70}")
    print(f"DETAILED EVALUATION - {decoding.upper()} DECODING")
    print(f"{'='*70}\n")
    
    with torch.no_grad():
        sample_idx = 0
        char_f1_list = []
        for batch_idx, batch in enumerate(tqdm(dataloader, desc="Evaluating")):
            src = batch['src_ids'].to(device)
            src_texts = batch['src_text']
            tgt_texts = batch['tgt_text']
            
            for i in range(len(src_texts)):
                src_text = src_texts[i]
                tgt_text = tgt_texts[i]
                src_tensor = src[i].unsqueeze(0)
                
                # Generate prediction
                if hasattr(model, 'beam_search_decode') and decoding == "beam":
                    pred_text = model.beam_search_decode(
                        src_tensor, src_tokenizer, tgt_tokenizer,
                        max_len=100, beam_width=beam_width
                    )
                else:
                    pred_text = model.translate(
                        src_tensor, src_tokenizer, tgt_tokenizer,
                        max_len=100
                    )
                
                pred_text = pred_text.strip()
                tgt_text = tgt_text.strip()
                src_text = src_text.strip()
                
                # Compute metrics
                is_correct = (pred_text == tgt_text)
                if is_correct:
                    word_correct += 1
                
                min_len = min(len(pred_text), len(tgt_text))
                char_matches = sum(1 for j in range(min_len) if pred_text[j] == tgt_text[j])
                char_correct += char_matches
                char_total += len(tgt_text)
                
                char_accuracy = char_matches / len(tgt_text) if len(tgt_text) > 0 else 0.0
                char_f1 = char_overlap_f1(pred_text.strip(), tgt_text.strip())
                char_f1_list.append(char_f1)
                
                # Get original metadata from dataset
                # try:
                original_item = dataloader.dataset.data[sample_idx]
                source = original_item.get('source', 'Unknown')
                score = original_item.get('score', None)
                unique_id = f'sample_{sample_idx}'
                
                # Store complete result with all original fields
                result = {
                    'unique_identifier': unique_id,
                    'source': source,
                    'score': score,
                    'english_word': src_text,
                    'native_word': tgt_text,
                    'predicted_word': pred_text,
                    'is_correct': is_correct,
                    'english_length': len(src_text),
                    'native_length': len(tgt_text),
                    'predicted_length': len(pred_text),
                    'char_accuracy': char_accuracy,
                    'char_f1': char_f1,
                    'decoding_method': decoding,
                }
                
                if decoding == "beam":
                    result['beam_width'] = beam_width
                
                results.append(result)
                sample_idx += 1
                
                if max_samples and len(results) >= max_samples:
                    break
            
            if max_samples and len(results) >= max_samples:
                break
    
    # Create DataFrame
    results_df = pd.DataFrame(results)
    
    # Calculate metrics
    total_samples = len(results)
    word_accuracy = word_correct / total_samples if total_samples > 0 else 0.0
    char_accuracy = char_correct / char_total if char_total > 0 else 0.0
    char_f1 = np.mean(char_f1_list) if len(char_f1_list) > 0 else 0.0
    
    print(f"\nOVERALL METRICS:")
    print(f"  Total Samples: {total_samples:,}")
    print(f"  Word Accuracy: {word_accuracy:.4f}")
    print(f"  Char Accuracy: {char_accuracy:.4f}\n")
    print(f"  Char F1: {char_f1:.4f}\n")
    
    # Statistics by source
    if 'source' in results_df.columns and results_df['source'].nunique() > 1:
        print("ACCURACY BY SOURCE:")
        source_stats = results_df.groupby('source').agg({
            'is_correct': ['count', 'sum', 'mean']
        }).round(4)
        source_stats.columns = ['Count', 'Correct', 'Accuracy']
        print(source_stats.to_string())
        print()
    
    # Statistics by length
    results_df['length_bucket'] = pd.cut(
        results_df['english_length'], 
        bins=[0, 3, 6, 10, 15, 20, 100],
        labels=['1-3', '4-6', '7-10', '11-15', '16-20', '21+']
    )
    
    print("ACCURACY BY LENGTH:")
    length_stats = results_df.groupby('length_bucket').agg({
        'is_correct': ['count', 'mean']
    }).round(4)
    length_stats.columns = ['Count', 'Accuracy']
    print(length_stats.to_string())
    print()
    
    # Show some examples
    print("SAMPLE PREDICTIONS:")
    for idx in range(min(10, len(results_df))):
        row = results_df.iloc[idx]
        ok = "βœ“" if row['is_correct'] else "βœ—"
        print(f"{ok} {row['english_word']} -> {row['predicted_word']} (expected: {row['native_word']})")
    print()
    
    # Save results
    os.makedirs(os.path.dirname(output_file) if os.path.dirname(output_file) else '.', exist_ok=True)
    results_df.to_json(output_file, orient='records', lines=True, force_ascii=False)
    print(f"βœ… Results saved to: {output_file}\n")
    
    metrics = {
        'total_samples': total_samples,
        'word_correct': word_correct,
        'word_accuracy': word_accuracy,
        'char_accuracy': char_accuracy,
        'char_f1': char_f1,
        'decoding_method': decoding
    }
    
    if decoding == "beam":
        metrics['beam_width'] = beam_width
    
    return results_df, metrics



# =======================
# 10. TRANSFORMER MODEL
# =======================
import math

class PositionalEncoding(nn.Module):
    """Sinusoidal positional encoding"""
    def __init__(self, d_model, max_len=5000, dropout=0.1):
        super().__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))

        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)

        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)

    def forward(self, x):
        x = x + self.pe[:, :x.size(1), :]
        return self.dropout(x)


class TransformerTransliterator(nn.Module):
    def __init__(self,
                 src_vocab_size,
                 tgt_vocab_size,
                 d_model=256,
                 nhead=8,
                 num_encoder_layers=2,
                 num_decoder_layers=2,
                 dim_feedforward=512,
                 dropout=0.1,
                 max_len=100):
        super().__init__()

        self.d_model = d_model
        self.src_vocab_size = src_vocab_size
        self.tgt_vocab_size = tgt_vocab_size

        # Embeddings
        self.src_embedding = nn.Embedding(src_vocab_size, d_model, padding_idx=0)
        self.tgt_embedding = nn.Embedding(tgt_vocab_size, d_model, padding_idx=0)

        # Positional encoding
        self.pos_encoder = PositionalEncoding(d_model, max_len, dropout)

        # Transformer
        self.transformer = nn.Transformer(
            d_model=d_model,
            nhead=nhead,
            num_encoder_layers=num_encoder_layers,
            num_decoder_layers=num_decoder_layers,
            dim_feedforward=dim_feedforward,
            dropout=dropout,
            batch_first=True
        )

        # Output layer
        self.fc_out = nn.Linear(d_model, tgt_vocab_size)

        self._init_weights()

    def _init_weights(self):
        initrange = 0.1
        self.src_embedding.weight.data.uniform_(-initrange, initrange)
        self.tgt_embedding.weight.data.uniform_(-initrange, initrange)
        self.fc_out.bias.data.zero_()
        self.fc_out.weight.data.uniform_(-initrange, initrange)

    def generate_square_subsequent_mask(self, sz):
        """Causal mask for decoder"""
        mask = torch.triu(torch.ones(sz, sz), diagonal=1).bool()
        mask = mask.masked_fill(mask, float('-inf'))
        return mask

    def create_padding_mask(self, seq, pad_idx=0):
        """Mask for padding tokens"""
        return (seq == pad_idx)

    def forward(self, src, tgt):
        tgt_len = tgt.shape[1]
        tgt_mask = self.generate_square_subsequent_mask(tgt_len).to(tgt.device)

        src_padding_mask = self.create_padding_mask(src)
        tgt_padding_mask = self.create_padding_mask(tgt)

        src_emb = self.pos_encoder(self.src_embedding(src) * math.sqrt(self.d_model))
        tgt_emb = self.pos_encoder(self.tgt_embedding(tgt) * math.sqrt(self.d_model))

        output = self.transformer(
            src_emb,
            tgt_emb,
            tgt_mask=tgt_mask,
            src_key_padding_mask=src_padding_mask,
            tgt_key_padding_mask=tgt_padding_mask,
            memory_key_padding_mask=src_padding_mask
        )

        output = self.fc_out(output)
        return output

    def translate(self, src, src_tokenizer, tgt_tokenizer, max_len=50, device='cpu',
                  decoding="greedy", beam_width=3):
        """Greedy or Beam Search decoding"""
        self.eval()
        with torch.no_grad():
            if isinstance(src, str):
                src_ids = src_tokenizer.encode(src)
                src_tensor = torch.tensor(src_ids, dtype=torch.long).unsqueeze(0).to(device)
            else:
                src_tensor = src.to(device)

            sos_idx = tgt_tokenizer.char2idx[tgt_tokenizer.sos_token]
            eos_idx = tgt_tokenizer.char2idx[tgt_tokenizer.eos_token]

            if decoding == "beam":
                # Initialize beams: list of (sequence, score)
                beams = [([sos_idx], 0.0)]
                for _ in range(max_len):
                    new_beams = []
                    for seq, score in beams:
                        tgt_tensor = torch.tensor(seq, dtype=torch.long).unsqueeze(0).to(device)
                        output = self.forward(src_tensor, tgt_tensor)
                        logits = output[0, -1, :]
                        probs = torch.log_softmax(logits, dim=-1)

                        topk_probs, topk_indices = probs.topk(beam_width)
                        for k in range(beam_width):
                            next_seq = seq + [topk_indices[k].item()]
                            next_score = score + topk_probs[k].item()
                            new_beams.append((next_seq, next_score))

                    # Keep top beam_width sequences
                    beams = sorted(new_beams, key=lambda x: x[1], reverse=True)[:beam_width]

                    # Stop if all beams have ended
                    if all(seq[-1] == eos_idx for seq, _ in beams):
                        break

                best_seq = beams[0][0]
                return tgt_tokenizer.decode(best_seq, skip_special_tokens=True)

            else:
                # Greedy decoding
                tgt_indices = [sos_idx]
                for _ in range(max_len):
                    tgt_tensor = torch.tensor(tgt_indices, dtype=torch.long).unsqueeze(0).to(device)
                    output = self.forward(src_tensor, tgt_tensor)
                    next_token = output[0, -1, :].argmax().item()
                    tgt_indices.append(next_token)
                    if next_token == eos_idx:
                        break
                return tgt_tokenizer.decode(tgt_indices, skip_special_tokens=True)


def train_transformer_epoch(model, dataloader, optimizer, criterion, device):
    model.train()
    total_loss = 0

    for batch in dataloader:
        src = batch['src_ids'].to(device)
        tgt = batch['tgt_ids'].to(device)

        tgt_input = tgt[:, :-1]
        tgt_output = tgt[:, 1:]

        optimizer.zero_grad()
        output = model(src, tgt_input)

        loss = criterion(output.reshape(-1, output.shape[-1]), tgt_output.reshape(-1))
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
        optimizer.step()
        total_loss += loss.item()

    return total_loss / len(dataloader)


def evaluate_transformer(model, dataloader, criterion, device):
    model.eval()
    total_loss = 0

    with torch.no_grad():
        for batch in dataloader:
            src = batch['src_ids'].to(device)
            tgt = batch['tgt_ids'].to(device)

            tgt_input = tgt[:, :-1]
            tgt_output = tgt[:, 1:]

            output = model(src, tgt_input)
            loss = criterion(output.reshape(-1, output.shape[-1]), tgt_output.reshape(-1))
            total_loss += loss.item()

    return total_loss / len(dataloader)

if __name__ == "__main__":
    # 1️⃣ Download and extract Hindi Aksharantar
    url = "https://huggingface.co/datasets/ai4bharat/Aksharantar/resolve/main/hin.zip"
    resp = requests.get(url)
    resp.raise_for_status()

    tmpdir = tempfile.mkdtemp()
    with zipfile.ZipFile(io.BytesIO(resp.content), "r") as zip_ref:
        zip_ref.extractall(tmpdir)

    print("Extracted:", os.listdir(tmpdir))

    clean_dir = os.path.join(tmpdir, "cleaned")
    os.makedirs(clean_dir, exist_ok=True)

    for split in ["train", "valid", "test"]:
        clean_json_file(
            os.path.join(tmpdir, f"hin_{split}.json"),
            os.path.join(clean_dir, f"{split}.json")
        )

    # 3️⃣ Load cleaned dataset
    dataset = load_dataset(
        "json",
        data_files={
            "train": os.path.join(clean_dir, "train.json"),
            "validation": os.path.join(clean_dir, "valid.json"),
            "test": os.path.join(clean_dir, "test.json"),
        },
    )

    print(dataset)
    print(dataset["train"][0])

    # Analyze BEFORE sampling
    print("\n" + "="*80)
    print("DATA ANALYSIS - BEFORE SAMPLING")
    print("="*80)

    train_stats_before = analyze_dataset_statistics(dataset['train'], 'train (before sampling)')
    valid_stats = analyze_dataset_statistics(dataset['validation'], 'validation')
    test_stats = analyze_dataset_statistics(dataset['test'], 'test')

    # Save statistics
    os.makedirs("analysis", exist_ok=True)
    train_stats_before.to_csv('analysis/data_stats_train_before_sampling.csv', index=False)
    valid_stats.to_csv('analysis/data_stats_valid.csv', index=False)
    test_stats.to_csv('analysis/data_stats_test.csv', index=False)


    full_dataset = list(dataset['train'])
    dataset['train'] = sample_transliteration_dataset(full_dataset, sample_size=100000, top_freq_ratio=0.3)

    print(f"\nβœ… Sampled dataset size: {len(dataset['train'])}")
    print("Example entries:", dataset['train'][:5])

    # Analyze AFTER sampling
    print("\n" + "="*80)
    print("DATA ANALYSIS - AFTER SAMPLING")
    print("="*80)

    train_stats_after = analyze_dataset_statistics(dataset['train'], 'train (after sampling)')
    train_stats_after.to_csv('analysis/data_stats_train_after_sampling.csv', index=False)

    # =======================
    # 6. TOKENIZERS + DATALOADERS
    # =======================
    src_tokenizer = CharTokenizer()
    tgt_tokenizer = CharTokenizer()

    # fit tokenizers on training set
    train_items = list(dataset['train'])
    valid_items = list(dataset['validation'])
    test_items = list(dataset['test'])

    # Build tokenizer vocab from train split
    src_texts = [item['english word'] for item in train_items]
    tgt_texts = [item['native word'] for item in train_items]
    src_tokenizer.fit(src_texts)
    tgt_tokenizer.fit(tgt_texts)

    print(f"\nSource vocab size: {len(src_tokenizer)}")
    print(f"Target vocab size: {len(tgt_tokenizer)}")

    train_split = train_items
    valid_split = valid_items
    test_split = test_items

    train_dataset = TransliterationDataset(train_split, src_tokenizer, tgt_tokenizer)
    valid_dataset = TransliterationDataset(valid_split, src_tokenizer, tgt_tokenizer)
    test_dataset  = TransliterationDataset(test_split,  src_tokenizer, tgt_tokenizer)

    train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True, collate_fn=collate_fn)
    valid_loader = DataLoader(valid_dataset, batch_size=128, shuffle=False, collate_fn=collate_fn)
    test_loader  = DataLoader(test_dataset,  batch_size=32, shuffle=False, collate_fn=collate_fn)

    # =======================
    # 7. LSTM MODEL / TRAINING SETUP
    # =======================
    EMBED_DIM = 256
    ENC_HIDDEN_DIM = 256
    DEC_HIDDEN_DIM = 256
    NUM_LAYERS_MODEL = 2
    DROPOUT = 0.3

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print(f"\nUsing device: {device}")

    encoder = Encoder(len(src_tokenizer), EMBED_DIM, ENC_HIDDEN_DIM, NUM_LAYERS_MODEL, DROPOUT)
    decoder = Decoder(len(tgt_tokenizer), EMBED_DIM, ENC_HIDDEN_DIM, DEC_HIDDEN_DIM, NUM_LAYERS_MODEL, DROPOUT)
    model = Seq2Seq(encoder, decoder, device).to(device)

    criterion = nn.CrossEntropyLoss(ignore_index=0)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

    # =======================
    # 8. LSTM TRAINING LOOP
    # =======================
    print("\n" + "="*80)
    print("TRAINING LSTM MODEL")
    print("="*80 + "\n")

    NUM_EPOCHS = 10
    for epoch in range(NUM_EPOCHS):
        train_loss = train_epoch(model, train_loader, optimizer, criterion, device)
        valid_loss = evaluate(model, valid_loader, criterion, device)
        print(f'Epoch {epoch+1}/{NUM_EPOCHS} | Train Loss: {train_loss:.4f} | Valid Loss: {valid_loss:.4f}')

    torch.save({
        'model_state_dict': model.state_dict(),
        'src_vocab': src_tokenizer.char2idx,
        'tgt_vocab': tgt_tokenizer.char2idx,
    }, 'lstm_transliterator.pt')

    # =======================
    # 9. LSTM EVALUATION WITH FULL DETAILS
    # =======================
    print("\n" + "="*80)
    print("LSTM MODEL EVALUATION")
    print("="*80)

    # Greedy decoding
    greedy_results_lstm, greedy_metrics_lstm = evaluate_with_full_details(
        model, test_loader,
        src_tokenizer, tgt_tokenizer,
        device=device,
        output_file='analysis/lstm_test_results_greedy.jsonl',
        decoding='greedy'
    )

    # Beam search decoding
    beam_results_lstm, beam_metrics_lstm = evaluate_with_full_details(
        model, test_loader,
        src_tokenizer, tgt_tokenizer,
        device=device,
        output_file='analysis/lstm_test_results_beam.jsonl',
        decoding='beam',
        beam_width=5
    )

    test_words = ['namaste', 'dhanyavaad', 'bharat']
    print("\nQuick manual checks (LSTM):")
    for word in test_words:
        print(f"{word} -> {model.translate(word, src_tokenizer, tgt_tokenizer)}")

    # =======================
    # 11. TRANSFORMER TRAINING
    # =======================
    print("\n" + "="*80)
    print("TRAINING TRANSFORMER MODEL")
    print("="*80 + "\n")

    D_MODEL = 256
    NHEAD = 8
    NUM_ENCODER_LAYERS = 2
    NUM_DECODER_LAYERS = 2
    DIM_FEEDFORWARD = 512
    DROPOUT = 0.1

    transformer_model = TransformerTransliterator(
        src_vocab_size=len(src_tokenizer),
        tgt_vocab_size=len(tgt_tokenizer),
        d_model=D_MODEL,
        nhead=NHEAD,
        num_encoder_layers=NUM_ENCODER_LAYERS,
        num_decoder_layers=NUM_DECODER_LAYERS,
        dim_feedforward=DIM_FEEDFORWARD,
        dropout=DROPOUT
    ).to(device)

    criterion = nn.CrossEntropyLoss(ignore_index=0, label_smoothing=0.1)
    optimizer = torch.optim.Adam(transformer_model.parameters(), lr=1e-4, betas=(0.9, 0.98), eps=1e-9)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=2)

    NUM_EPOCHS = 10

    for epoch in range(NUM_EPOCHS):
        train_loss = train_transformer_epoch(transformer_model, train_loader, optimizer, criterion, device)
        valid_loss = evaluate_transformer(transformer_model, valid_loader, criterion, device)
        scheduler.step(valid_loss)

        print(f"Epoch {epoch+1}/{NUM_EPOCHS} | Train Loss: {train_loss:.4f} | Valid Loss: {valid_loss:.4f}")

    torch.save({
        'model_state_dict': transformer_model.state_dict(),
        'src_vocab': src_tokenizer.char2idx,
        'tgt_vocab': tgt_tokenizer.char2idx,
    }, 'transformer_transliterator.pt')


    # =======================
    # 12. TRANSFORMER EVALUATION WITH FULL DETAILS
    # =======================
    print("\n" + "="*80)
    print("TRANSFORMER MODEL EVALUATION")
    print("="*80)

    # Greedy decoding
    greedy_results_transformer, greedy_metrics_transformer = evaluate_with_full_details(
        transformer_model, test_loader,
        src_tokenizer, tgt_tokenizer,
        device=device,
        output_file='analysis/transformer_test_results_greedy.jsonl',
        decoding='greedy'
    )

    # Beam search decoding
    beam_results_transformer, beam_metrics_transformer = evaluate_with_full_details(
        transformer_model, test_loader,
        src_tokenizer, tgt_tokenizer,
        device=device,
        output_file='analysis/transformer_test_results_beam.jsonl',
        decoding='beam',
        beam_width=5
    )

    test_words = ['namaste', 'dhanyavaad', 'bharat', 'mumbai', 'hindustan']
    print("\nTest Translations (Transformer):")
    for word in test_words:
        translated = transformer_model.translate(word, src_tokenizer, tgt_tokenizer, device=device)
        print(f"{word} -> {translated}")


    # =======================
    # 13. FINAL SUMMARY
    # =======================
    print("\n" + "="*80)
    print("TRAINING COMPLETE - SUMMARY")
    print("="*80 + "\n")

    print("LSTM MODEL:")
    print(f"  Greedy  - Word Acc: {greedy_metrics_lstm['word_accuracy']:.4f}, Char F1: {greedy_metrics_lstm['char_f1']:.4f}, Char Acc: {greedy_metrics_lstm['char_accuracy']:.4f}")
    print(f"  Beam(5) - Word Acc: {beam_metrics_lstm['word_accuracy']:.4f}, Char F1: {beam_metrics_lstm['char_f1']:.4f}, Char Acc: {beam_metrics_lstm['char_accuracy']:.4f}")

    print("\nTRANSFORMER MODEL:")
    print(f"  Greedy  - Word Acc: {greedy_metrics_transformer['word_accuracy']:.4f}, Char F1: {greedy_metrics_transformer['char_f1']:.4f}, Char Acc: {greedy_metrics_transformer['char_accuracy']:.4f}")
    print(f"  Beam(5) - Word Acc: {beam_metrics_transformer['word_accuracy']:.4f}, Char F1: {beam_metrics_transformer['char_f1']:.4f}, Char Acc: {beam_metrics_transformer['char_accuracy']:.4f}")

    print("\nπŸ“ OUTPUT FILES:")
    print("  Data Statistics:")
    print("    - analysis/data_stats_train_before_sampling.csv")
    print("    - analysis/data_stats_train_after_sampling.csv")
    print("    - analysis/data_stats_valid.csv")
    print("    - analysis/data_stats_test.csv")
    print("  Model Checkpoints:")
    print("    - lstm_transliterator.pt")
    print("    - transformer_transliterator.pt")
    print("  Test Results (with full metadata):")
    print("    - analysis/lstm_test_results_greedy.jsonl")
    print("    - analysis/lstm_test_results_beam.jsonl")
    print("    - analysis/transformer_test_results_greedy.jsonl")
    print("    - analysis/transformer_test_results_beam.jsonl")

    print("\nβœ… All done! Check the analysis/ directory for detailed results.")
    print("="*80)