File size: 1,128 Bytes
df98aad
568f26c
df98aad
bece762
 
df98aad
 
 
bece762
 
 
df98aad
bece762
df98aad
 
 
 
bece762
df98aad
 
bece762
df98aad
 
3c53dfd
df98aad
 
bece762
df98aad
 
 
 
568f26c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import gradio as gr
import torchaudio
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

# Load model and processor
processor = Wav2Vec2Processor.from_pretrained("Mustafaa4a/ASR-Somali")
model = Wav2Vec2ForCTC.from_pretrained("Mustafaa4a/ASR-Somali")

def transcribe(audio):
    waveform, sample_rate = torchaudio.load(audio)

    if sample_rate != 16000:
        resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
        waveform = resampler(waveform)

    inputs = processor(waveform.squeeze(), sampling_rate=16000, return_tensors="pt")
    with torch.no_grad():
        logits = model(**inputs).logits

    predicted_ids = torch.argmax(logits, dim=-1)
    transcription = processor.decode(predicted_ids[0])
    return transcription

# Gradio Interface setup
interface = gr.Interface(
    fn=transcribe,
    inputs=gr.Audio(type="filepath", label="Upload Somali Audio (.wav)"),
    outputs=gr.Textbox(label="Transcription"),
    title="Somali-speech_to_text",
    description="Upload a Somali speech audio file (mono WAV, 16kHz) and get the text transcription."
).launch()