File size: 58,203 Bytes
52e296b 81e104a 52e296b 81e104a 52e296b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 |
import streamlit as st
import os
import tensorflow as tf
import keras
from tensorflow.python.keras.utils.np_utils import to_categorical
from keras.models import Sequential
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import cv2
from sklearn.model_selection import train_test_split
# from keras.layers import TimeDistributed as TD
from Time_Distr import TimeDistributed as TD
import Memristor as mem
from SCNN import Integrator_layer, Reduce_sum, sparse_data_generator_non_spiking
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
print('Num GPUs Available: ', tf.config.list_physical_devices('GPU'))
#st.success('This is a success message!', icon="β
")
if 'nn_type' not in st.session_state:
st.session_state.nn_type = None
if 'snn' not in st.session_state:
st.session_state.snn = False
if 'load' not in st.session_state:
st.session_state.load = False
if 'upld' not in st.session_state:
st.session_state.upld = False
if 'custom' not in st.session_state:
st.session_state.custom = False
# Initialization session_state for added layers
if 'submittedLayers' not in st.session_state:
st.session_state.submittedLayers = []
if 'descr' not in st.session_state:
st.session_state.descr = {}
if 'x_train' not in st.session_state:
st.session_state.x_train = None
if 'y_train' not in st.session_state:
st.session_state.y_train = None
if 'x_test' not in st.session_state:
st.session_state.x_test = None
if 'y_test' not in st.session_state:
st.session_state.y_test = None
if 'ip_shape' not in st.session_state:
st.session_state.ip_shape = None
if 'model' not in st.session_state:
st.session_state.model = None
st.title("Build your Neural Network")
# Select box for neural network type
nn_type = st.selectbox("Please be specific about the Neural Network",("Hardware","Software"))
makeIt = st.button('Make It')
c1, c2, c3 = st.columns((8,1,1))
with c1:
st.write('Are you going to build a SCNN?',st.session_state.snn)
with c2:
snn = st.button('Yes')
with c3:
No_snn = st.button('No')
if snn:
st.session_state.snn = True
if No_snn:
st.session_state.snn = False
if makeIt:
st.session_state.nn_type = nn_type
st.session_state.load = False
# Select box for selecting the dataset
st.session_state.dataset = st.sidebar.selectbox("Select and Load dataset",("mnist","cifar10","cifar100","Iris"))
# uploaded_file = st.sidebar.file_uploader("Choose a csv file")
# if uploaded_file is not None:
# # Can be used wherever a "file-like" object is accepted:
# dataframe = pd.read_csv(uploaded_file)
# st.write(dataframe)
c1,c2 = st.sidebar.columns((1,2))
with c1:
load = st.button('Load')
with c2:
upld = st.button('Upload image dataset')
if load:
st.session_state.load = True
st.session_state.submittedLayers = []
if upld:
if st.session_state.upld:
st.session_state.upld = False
else:
st.session_state.upld = True
def custom_dataset(path,shape,test_size):
shape = eval(shape)
classes = []
for p in os.listdir(path):
if os.path.isdir(os.path.join(path,p)):
classes.append(p)
images = []
label = []
label_count = 0
for clss in classes:
trg_path = os.path.join(path,clss)
for img in os.listdir(trg_path):
img = cv2.imread(trg_path+'/'+img)
img = cv2.resize(img,shape)
img_array = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
images.append(img_array)
label.append(label_count)
label_count += 1
images = np.array(images)
label = np.array(label)
n_classes = len(classes)
x_train, x_test, y_train, y_test = train_test_split(images, label, test_size=test_size, random_state=42)
return x_train, x_test, y_train, y_test, n_classes
if st.session_state.upld:
st.sidebar.warning('The Image folder should be in a format "Root folder--> class1 folder-->(images), class2 folder-->(images), etc"')
# st.sidebar.caption('Root folder--> class1 folder-->(images), class2 folder-->(images), etc')
rpath = st.sidebar.text_input('Give path of the Root folder')
shape = st.sidebar.text_input('Target shape in tuple format')
st.sidebar.caption('target shape is the shape in which all your images will be resized into. eg:(32,32)')
test_size = st.sidebar.number_input('Test_size for splitting dataset',min_value=0.0,max_value=1.0,value=0.2)
done = st.sidebar.button('Done')
if done:
st.session_state.x_train, st.session_state.x_test, st.session_state.y_train, st.session_state.y_test, n_classes = custom_dataset(rpath,shape,test_size)
st.sidebar.success('Successfully uploaded')
st.session_state.y_train = np.asarray(st.session_state.y_train).astype('float32').reshape((-1,1))
st.session_state.y_test = np.asarray(st.session_state.y_test).astype('float32').reshape((-1,1))
st.session_state.custom = True
st.session_state.descr = {'Number of classes': n_classes,
'x_train shape ': st.session_state.x_train.shape,
'x_test shape ': st.session_state.x_test.shape,
'y_train shape ': st.session_state.y_train.shape,
'y_test shape ': st.session_state.y_test.shape}
st.session_state.ip_shape = st.session_state.x_train.shape[1:]
st.session_state.model = Sequential()
st.session_state.model.add(tf.keras.layers.InputLayer(input_shape=st.session_state.ip_shape))
if not st.session_state.load or not st.session_state.custom:
st.write('Load or upload the dataset from the sidebar')
# function for loading the selected dataset
def get_dataset(dataset):
if dataset=="mnist":
descr = {
"Dataset" : "MNIST digits classification dataset",
"About" : "This is a dataset of 60,000 28x28 grayscale images of the 10 digits, along with a test set of 10,000 images.",
"xTrain" : "uint8 NumPy array of grayscale image data with shapes (60000, 28, 28), containing the training data. Pixel values range from 0 to 255.",
"yTrain" : "uint8 NumPy array of digit labels (integers in range 0-9) with shape (60000,) for the training data.",
"xTest" : "uint8 NumPy array of grayscale image data with shapes (10000, 28, 28), containing the test data. Pixel values range from 0 to 255.",
"yTest" : "uint8 NumPy array of digit labels (integers in range 0-9) with shape (10000,) for the test data."
}
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
# Model / data parameters
num_classes = 10
ip_shape = (28, 28, 1)
# Scale images to the [0, 1] range
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255
# Make sure images have shape (28, 28, 1)
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
# convert class vectors to binary class matrices
y_train = to_categorical(y_train, num_classes)
y_test = to_categorical(y_test, num_classes)
st.sidebar.success("Dataset loaded",icon='π€©')
elif dataset=="cifar10":
descr = {
"Dataset":"CIFAR10 small images classification dataset",
"About":"This is a dataset of 50,000 32x32 color training images and 10,000 test images, labeled over 10 categories.",
"xTrain": "uint8 NumPy array of grayscale image data with shapes (50000, 32, 32, 3), containing the training data. Pixel values range from 0 to 255.",
"yTrain": "uint8 NumPy array of labels (integers in range 0-9) with shape (50000, 1) for the training data.",
"xTest": "uint8 NumPy array of grayscale image data with shapes (10000, 32, 32, 3), containing the test data. Pixel values range from 0 to 255.",
"yTest": "uint8 NumPy array of labels (integers in range 0-9) with shape (10000, 1) for the test data."
}
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
num_classes = 10
ip_shape = (32, 32, 3)
# Scale images to the [0, 1] range
x_train = x_train.astype("float32") / 255.0
x_test = x_test.astype("float32") / 255.0
# convert class vectors to binary class matrices
y_train = to_categorical(y_train, num_classes)
y_test = to_categorical(y_test, num_classes)
st.sidebar.success("Dataset loaded",icon='π€©')
elif dataset=="cifar100":
descr = {
"Dataset":"CIFAR10 small images classification dataset",
"About":"This is a dataset of 50,000 32x32 color training images and 10,000 test images, labeled over 100 fine-grained classes that are grouped into 20 coarse-grained classes.",
"xTrain": "uint8 NumPy array of grayscale image data with shapes (50000, 32, 32, 3), containing the training data. Pixel values range from 0 to 255.",
"yTrain": "uint8 NumPy array of labels (integers in range 0-9) with shape (50000, 1) for the training data.",
"xTest": "uint8 NumPy array of grayscale image data with shapes (10000, 32, 32, 3), containing the test data. Pixel values range from 0 to 255.",
"yTest": "uint8 NumPy array of labels (integers in range 0-9) with shape (10000, 1) for the test data."
}
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar100.load_data()
num_classes = 100
ip_shape = (32, 32, 3)
# Scale images to the [0, 1] range
x_train = x_train.astype("float32") / 255.0
x_test = x_test.astype("float32") / 255.0
# convert class vectors to binary class matrices
y_train = to_categorical(y_train, num_classes)
y_test = to_categorical(y_test, num_classes)
st.sidebar.success("Dataset loaded",icon='π€©')
elif dataset=='Iris':
from sklearn.datasets import load_iris
from sklearn.preprocessing import OneHotEncoder
from sklearn.model_selection import train_test_split
iris_data = load_iris()
x = iris_data.data
y_ = iris_data.target.reshape(-1, 1)
encoder = OneHotEncoder(sparse=False)
y = encoder.fit_transform(y_)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20)
ip_shape = (4,)
descr={'Dataset':'Iris dataset',
'About':'This data sets consists of 3 different types of irisesβ (Setosa, Versicolour, and Virginica) petal and sepal length, stored in a 150x4 numpy.ndarray. The rows being the samples and the columns being: Sepal Length, Sepal Width, Petal Length and Petal Width.',
'x_train' : 'x_train shape is (120, 4)',
'x_test' : 'x_test shape is (30, 4)',
'y_train' : 'y_train shape is (120, 1)',
'y_test' : 'y_test shape is (30, 1)'
}
st.sidebar.success("Dataset loaded",icon='π€©')
else:
st.write("Please select a dataset")
return descr, ip_shape, x_train, y_train, x_test, y_test
#loading the dataset
if load:
descr,ip_shape, x_train, y_train, x_test, y_test = get_dataset(st.session_state.dataset)
st.session_state.x_train = x_train
st.session_state.y_train = y_train
st.session_state.x_test = x_test
st.session_state.y_test = y_test
st.session_state.descr = descr
st.session_state.ip_shape = ip_shape
st.session_state.model = Sequential()
if st.session_state.snn:
st.session_state.model.add(TD(tf.keras.layers.InputLayer(input_shape=st.session_state.ip_shape)))
else:
st.session_state.model.add(tf.keras.layers.InputLayer(input_shape=st.session_state.ip_shape))
if (st.session_state.load or st.session_state.custom) and st.session_state.nn_type:
if st.session_state.model == None:
st.session_state.model = Sequential()
st.session_state.model.add(tf.keras.layers.InputLayer(input_shape=st.session_state.ip_shape))
# st.write(st.session_state.ip_shape)
# if st.session_state.nn_type == 'Hardware':
# st.session_state.Hmodel = Sequential()
# st.session_state.Hmodel.add(tf.keras.layers.InputLayer(input_shape=ip_shape))
if (st.session_state.dataset == 'mnist' and st.session_state.load):
st.sidebar.caption('The loaded dataset has shape (28,28,1). If you want to reshape it to (784,) please click the below button')
reshape = st.sidebar.button('Reshape')
if reshape:
num_pixels = 784
st.session_state.x_train = st.session_state.x_train.reshape(st.session_state.x_train.shape[0], num_pixels)
st.session_state.x_test = st.session_state.x_test.reshape(st.session_state.x_test.shape[0], num_pixels)
st.session_state.ip_shape = (784,)
st.session_state.model = Sequential()
st.session_state.model.add(tf.keras.layers.InputLayer(input_shape=st.session_state.ip_shape))
st.session_state.submittedLayers = []
st.sidebar.success('Successfully reshaped')
# st.sidebar.write(st.session_state.x_train.shape)
if load and not st.session_state.nn_type:
st.sidebar.error("Are you sure that you selected the type of your Neural Network. If not make it and try loading again.....")
# container showing loaded dataset discription
with st.container():
if st.session_state.descr =={}:
pass
else:
st.subheader('Loaded dataset')
for i in st.session_state.descr.keys():
st.write(i," : ",st.session_state.descr[i])
if st.session_state.custom:
Norm = st.button('Normalize the dataset')
st.caption('If Normalization shows error, try changing target shape to lower pixel sizes like (32,32) and upload again. Or you can skip normalization step and move on. But remember that this step will affect the accuracy of your model.')
if Norm:
st.session_state.x_train = st.session_state.x_train.astype("float32") / 255
st.session_state.x_test = st.session_state.x_test.astype("float32") / 255
st.success('Succesfully Normalized')
if st.session_state.snn:
c1,c2 = st.columns(2)
with c1:
b_size = st.number_input('batch_size', value = 32)
n_steps = st.number_input('number of steps', value = 100)
with c2:
sh = st.selectbox('shuffle',(True,False))
fl = st.selectbox('flatten',(False,True))
timesteps = st.number_input('timesteps', value = 100)
c1,c2,c3 = st.columns((1,1,1))
with c2:
spike = st.button('Generate spiking dataset')
if spike:
x_train_for_spiking = st.session_state.x_train
x_test_for_spiking = st.session_state.x_test
y_train_for_spiking = st.session_state.y_train
y_test_for_spiking = st.session_state.y_test
ip_shape_for_spiking = [st.session_state.ip_shape[0], st.session_state.ip_shape[1], st.session_state.ip_shape[2]]
st.session_state.dataset_generator = tf.data.Dataset.from_generator(lambda: sparse_data_generator_non_spiking(input_images=x_train_for_spiking,
input_labels=y_train_for_spiking,
batch_size=b_size,
nb_steps=n_steps, shuffle=True,
flatten=fl),
output_shapes=((None, timesteps, ip_shape_for_spiking[0], ip_shape_for_spiking[1], ip_shape_for_spiking[2]), (None, 10)),
output_types=(tf.float64, tf.uint8))
st.session_state.dataset_generator_test = tf.data.Dataset.from_generator(lambda: sparse_data_generator_non_spiking(input_images=x_test_for_spiking,
input_labels=y_test_for_spiking,
batch_size=b_size,
nb_steps=n_steps, shuffle=sh,
flatten=fl),
output_shapes=((None, timesteps, ip_shape_for_spiking[0], ip_shape_for_spiking[1], ip_shape_for_spiking[2]), (None, 10)),
output_types=(tf.float64, tf.uint8))
st.success('Successfully generated')
# dict storing each layers and parameters
LAYERSandPARAMS={
"Reshape":{
"target_shape":'(28, 28, 1)',
"name":"Reshape_1"
},
"Dense":{
"units": 10,
"activation":("relu","sigmoid","softmax","softplus","softsign","tanh","selu","elu","exponential",None),
"kernel_initializer":("RandomUniform","RandomNormal","TruncatedNormal","Zeros","Ones","GlorotNormal","GlorotUniform","HeNormal","HeUniform","Identity","Orthogonal","Constant","VarianceScaling"),
"bias_initializer":("zeros","RandomNormal","RandomUniform","TruncatedNormal","Ones","GlorotNormal","GlorotUniform","HeNormal","HeUniform","Identity","Orthogonal","Constant","VarianceScaling"),
"name":"dense_1"
},
"Conv2D":{
"filters": 32,
"kernel_size":3,
"strides":1,
"activation":("relu","sigmoid","softmax","softplus","softsign","tanh","selu","elu","exponential",None),
"padding":("valid","same","causal"),
"kernel_initializer":("RandomUniform","RandomNormal","TruncatedNormal","Zeros","Ones","GlorotNormal","GlorotUniform","HeNormal","HeUniform","Identity","Orthogonal","Constant","VarianceScaling"),
"bias_initializer":("zeros","RandomNormal","RandomUniform","TruncatedNormal","Ones","GlorotNormal","GlorotUniform","HeNormal","HeUniform","Identity","Orthogonal","Constant","VarianceScaling"),
"name":"Conv2D_1"
},
"DepthwiseConv2D":{
"kernel_size":3,
"depth_multiplier":1,
"depthwise_initializer":("glorot_uniform","RandomNormal","RandomUniform","TruncatedNormal","Zeros","Ones","GlorotNormal","HeNormal","HeUniform","Identity","Orthogonal","Constant","VarianceScaling"),
"depthwise_constraint":(None,"MaxNorm","MinMaxNorm","NonNeg","UnitNorm","RadialConstraint"),
"depthwise_regularizer":(None,"L1","L2","L1L2","OrthogonalRegularizer"),
"name":"DepthwiseConv2D_1"
},
"MaxPooling1D":{
"pool_size":2,
"strides":1,
"padding":("valid","same"),
"data_format":("channels_last","channels_first"),
"name":"MaxPooling1D_1"
},
"MaxPooling2D":{
"pool_size":2,
"strides":1,
"padding":("valid","same"),
"data_format":("channels_last","channels_first"),
"name":"MaxPooling2D_1"
},
"AveragePooling1D":{
"pool_size":2,
"strides":1,
"padding":("valid","same"),
"data_format":("channels_last","channels_first"),
"name":"AveragePooling1D_1"
},
"AveragePooling2D":{
"pool_size":2,
"strides":1,
"padding":("valid","same"),
"data_format":("channels_last","channels_first"),
"name":"AveragePooling1D_1"
},
"Dropout":{
"rate":0.5,
"name":"Dropout_1"
},
"GaussianNoise":{
"stddev":0.2
},
"GaussianDropout":{
"rate":0.5
},
"AlphaDropout":{
"rate":0.5,
#"noise_shape":2,
"seed":1
},
"LSTM":{
"units":5,
"return_sequences":True,
"activation":("tanh","sigmoid","relu","softmax","softplus","softsign","selu","elu","exponential",None),
"recurrent_activation":("sigmoid","relu","softmax","softplus","softsign","tanh","selu","elu","exponential",None),
"use_bias":True,
"kernel_initializer":("glorot_uniform","RandomNormal","RandomUniform","TruncatedNormal","Zeros","Ones","GlorotNormal","HeNormal","HeUniform","Identity","Orthogonal","Constant","VarianceScaling"),
"recurrent_initializer":("Orthogonal","glorot_uniform","RandomNormal","RandomUniform","TruncatedNormal","Zeros","Ones","GlorotNormal","HeNormal","HeUniform","Identity","Constant","VarianceScaling"),
"bias_initializer":("zeros","RandomNormal","RandomUniform","TruncatedNormal","Ones","GlorotNormal","GlorotUniform","HeNormal","HeUniform","Identity","Orthogonal","Constant","VarianceScaling"),
"name":"LSTM_1"
},
"Flatten":{"name":"Flatten_1"},
"Integrator_layer":{"name":"Integrator_layer_1"},
"Reduce_sum":{"name":"Reduce_sum_1"},
}
# form for setting the parameters of the layer selected and Submit(Software)
if st.session_state.snn:
with st.sidebar:
layer = st.selectbox("Select a layer",('Conv2D', 'Integrator_layer', 'Flatten', 'Dense', 'Reduce_sum'))
with st.form("SNNParams"):
params = dict()
if layer in LAYERSandPARAMS.keys():
st.caption('Set the parameters below')
for i in LAYERSandPARAMS[layer].keys():
if i=='units':
val = st.number_input(i,min_value=0, max_value=None, value=LAYERSandPARAMS[layer][i])
params[i] = val
if i=='filters':
val = st.number_input(i,min_value=0, max_value=None, value=LAYERSandPARAMS[layer][i])
params[i] = val
if i=='kernel_size':
val = st.number_input(i,min_value=0, max_value=None, value=LAYERSandPARAMS[layer][i])
params[i] = val
if i=='name':
val = st.text_input(i, value=LAYERSandPARAMS[layer][i])
st.caption('Please update name when each layer is added')
params[i] = val
submitted = st.form_submit_button("Submit")
st.caption('Submitted layers will be displayed in the main page under Added Layers.')
if submitted:
if st.session_state.descr =={}:
st.error("Please load a dataset first, then start adding layers",icon='πββοΈ')
else:
try:
if layer=='Dense':
st.session_state.model.add(TD(tf.keras.layers.Dense(
units=params['units'],
activation=None
),name = params['name']))
if layer=='Conv2D':
st.session_state.model.add(TD(tf.keras.layers.Conv2D(
filters=params['filters'],
kernel_size=params['kernel_size'],
activation=None
),name =params['name']))
if layer == 'Flatten':
st.session_state.model.add(TD(tf.keras.layers.Flatten(),name =params['name']))
if layer == 'Integrator_layer':
st.session_state.model.add(Integrator_layer(name=params['name']))
if layer == 'Reduce_sum':
st.session_state.model.add(Reduce_sum(name=params['name']))
st.session_state.submittedLayers.append([layer,params])
st.success('Submitted Successfully',icon='π')
st.write("Layer :", layer)
st.write("Parameters", params)
except Exception as ex:
st.error(ex,icon="π₯Ί")
else:
with st.sidebar:
layer = st.selectbox("Select a layer",("Dense","Conv2D","DepthwiseConv2D","MaxPooling2D","Reshape","Flatten","Dropout","GaussianNoise","GaussianDropout","AlphaDropout"))
with st.form("Params"):
params = dict()
if layer in LAYERSandPARAMS.keys():
st.caption('Set the parameters below')
for i in LAYERSandPARAMS[layer].keys():
if isinstance(LAYERSandPARAMS[layer][i], tuple) and i!='target_shape':
val = st.selectbox(i,LAYERSandPARAMS[layer][i])
params[i] = val
elif i=='target_shape':
val = st.text_input(i, value=LAYERSandPARAMS[layer][i])
st.caption('Please enter in a tuple format, Eg:(28, 28, 1)')
params[i] = val
elif i=='rate' or i=='stddev':
val = st.number_input(i,min_value=0.0, max_value=1.0, value=LAYERSandPARAMS[layer][i])
params[i] = val
elif i=='name':
val = st.text_input(i, value=LAYERSandPARAMS[layer][i])
st.caption('Please update name when same layer is added')
params[i] = val
elif (i=="return_sequences") or (i =='use_bias'):
val = st.selectbox(i, (True,False))
params[i] = val
else:
val = st.number_input(i,min_value=0, max_value=None, value=LAYERSandPARAMS[layer][i])
params[i] = val
submitted = st.form_submit_button("Submit")
st.caption('Submitted layers will be displayed in the main page under Added Layers.')
if submitted:
if st.session_state.descr =={}:
st.error("Please load a dataset first, then start adding layers",icon='πββοΈ')
else:
try:
if layer=='Dense':
st.session_state.model.add(tf.keras.layers.Dense(
units=params['units'],
activation=params['activation'],
kernel_initializer =params['kernel_initializer'],
bias_initializer =params['bias_initializer'],
name = params['name']
))
if layer=='Conv2D':
st.session_state.model.add(tf.keras.layers.Conv2D(
filters=params['filters'],
kernel_size=params['kernel_size'],
activation=params['activation'],
strides =params['strides'],
padding =params['padding'],
kernel_initializer =params['kernel_initializer'],
bias_initializer =params['bias_initializer'],
name =params['name']
))
if layer=='DepthwiseConv2D':
st.session_state.model.add(tf.keras.layers.DepthwiseConv2D(
kernel_size=params['kernel_size'],
depth_multiplier=params['depth_multiplier'],
depthwise_initializer=params['depthwise_initializer'],
depthwise_constraint=params['depthwise_constraint'],
depthwise_regularizer=params['depthwise_regularizer'],
name =params['name']
))
if layer=='MaxPooling1D':
st.session_state.model.add(tf.keras.layers.MaxPooling1D(
pool_size=params['pool_size'],
strides =params['strides'],
padding =params['padding'],
data_format =params['data_format'],
name =params['name']
))
if layer=='MaxPooling2D':
st.session_state.model.add(tf.keras.layers.MaxPooling2D(
pool_size=params['pool_size'],
strides =params['strides'],
padding =params['padding'],
data_format =params['data_format'],
name =params['name']
))
if layer=='AveragePooling1D':
st.session_state.model.add(tf.keras.layers.AveragePooling1D(
pool_size=params['pool_size'],
strides =params['strides'],
padding =params['padding'],
data_format =params['data_format'],
name =params['name']
))
if layer=='AveragePooling2D':
st.session_state.model.add(tf.keras.layers.AveragePooling2D(
pool_size=params['pool_size'],
strides =params['strides'],
padding =params['padding'],
data_format =params['data_format'],
name =params['name']
))
if layer=='Reshape':
ts = eval(params['target_shape'])
st.session_state.model.add(tf.keras.layers.Reshape(
ts,name =params['name']
))
if layer=='Dropout':
rate = params['rate']
st.session_state.model.add(tf.keras.layers.Dropout(
rate,name =params['name']
))
if layer=='GaussianNoise':
st.session_state.model.add(tf.keras.layers.GaussianNoise(
stddev=params['stddev']
))
if layer=='GaussianDropout':
st.session_state.model.add(tf.keras.layers.GaussianDropout(
rate=params['rate']
))
if layer=='AlphaDropout':
st.session_state.model.add(tf.keras.layers.AlphaDropout(
rate=params['rate'],
#noise_shape=params['noise_shape'],
seed=params['seed']
))
if layer == 'LSTM' and st.session_state.ip_shape != (4,):
if st.session_state.model.layers == []:
st.session_state.model = Sequential()
st.session_state.model.add(tf.keras.layers.InputLayer(input_shape=st.session_state.ip_shape[:-1]))
if st.session_state.ip_shape[:-1] == 3:
st.session_state.x_train = np.array([cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) for image in st.session_state.x_train])
st.session_state.x_test = np.array([cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) for image in st.session_state.x_test])
st.session_state.model.add(tf.keras.layers.LSTM(
units=params['units'],
name = params['name'],
return_sequences=params['return_sequences']
))
if layer == 'Flatten':
st.session_state.model.add(tf.keras.layers.Flatten())
st.session_state.submittedLayers.append([layer,params])
st.success('Submitted Successfully',icon='π')
st.write("Layer :", layer)
st.write("Parameters", params)
except Exception as ex:
st.error(ex,icon="π₯Ί")
# if 'HardwareLayers' not in st.session_state:
# st.session_state.HardwareLayers = []
# HardwareLayers = {
# "Dense":{
# "units":3,
# "name":"Dense_1"
# },
# "LSTM":{
# "units":5,
# "return_sequences":True,
# "name":"LSTM_1"
# },
# "Conv2D":{
# "filters":3,
# "kernel_size":3,
# "name":"Conv2D_1"
# },
# "MaxPooling2D":{
# "pool_size":2,
# "name":"MaxPooling2D_1"
# }
# }
# if st.session_state.nn_type == 'Hardware':
# with st.sidebar:
# layer = st.selectbox("Select a layer",("Dense","Conv2D","MaxPooling2D","Flatten","LSTM"))
# with st.form("HParams"):
# params={}
# if layer in HardwareLayers.keys():
# for i in HardwareLayers[layer].keys():
# if i=="name":
# val = st.text_input(i, value=HardwareLayers[layer][i])
# st.caption('Please update name when same layer is added')
# params[i] = val
# elif i=="return_sequences":
# val = st.selectbox(i, (True,False))
# params[i] = val
# else:
# val = st.number_input(i,min_value=0, max_value=None, value=HardwareLayers[layer][i])
# params[i] = val
# submitted = st.form_submit_button("Submit")
# if submitted:
# if st.session_state.descr =={}:
# st.error("Please load a dataset first, then start adding layers",icon='πββοΈ')
# else:
# try:
# if layer=='Dense':
# st.session_state.Hmodel.add(tf.keras.layers.Dense(
# units=params['units'],
# name = params['name']
# ))
# if layer=='Conv2D':
# st.session_state.Hmodel.add(tf.keras.layers.Conv2D(
# filters=params['filters'],
# kernel_size=params['kernel_size'],
# name = params['name']
# ))
# if layer == 'Flatten':
# st.session_state.Hmodel.add(tf.keras.layers.Flatten())
# if layer == 'MaxPooling2D':
# st.session_state.Hmodel.add(tf.keras.layers.MaxPooling2D(
# pool_size=params['pool_size'],
# name = params['name']
# ))
# if layer == 'LSTM' and st.session_state.ip_shape != (4,):
# if st.session_state.Hmodel.layers == []:
# st.session_state.Hmodel = Sequential()
# st.session_state.Hmodel.add(tf.keras.layers.InputLayer(input_shape=st.session_state.ip_shape[:-1]))
# if st.session_state.ip_shape == (32,32,3):
# st.session_state.x_train = np.array([cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) for image in st.session_state.x_train])
# st.session_state.x_test = np.array([cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) for image in st.session_state.x_test])
# st.session_state.Hmodel.add(tf.keras.layers.LSTM(
# units=params['units'],
# name = params['name'],
# return_sequences=params['return_sequences']
# ))
# if layer == 'LSTM' and st.session_state.ip_shape == (4,):
# st.error('Please choose an appropriate dataset for the LSTM')
# else:
# st.session_state.HardwareLayers.append([layer,params])
# st.success('Submitted Successfully')
# st.write("Layer :", layer)
# st.write("Parameters", params)
# except Exception as ex:
# st.error(ex,icon="π₯Ί")
if 'Store' not in st.session_state:
st.session_state.Store = {"Dataset":[],"loss":[], "accuracy":[],"precision":[],"recall":[],"f1 score":[],"Neural network config":[]}
def show_layers(layer_list):
for i in layer_list:
layer_with_idx = str((layer_list.index(i))+1)+' '+i[0]
with st.expander(layer_with_idx):
st.write(i[1])
def show_compile_fit():
with st.container():
col1, col2 = st.columns(2)
with col1:
st.subheader('Compile')
optimizer = st.selectbox('optimizer',('adam','sgd','rmsprop','nadam','adadelta','adagrad','adamax','ftrl'))
loss = st.selectbox('loss',('categorical_crossentropy','binary_crossentropy','sparse_categorical_crossentropy','poisson'))
with col2:
st.subheader('Fit')
epochs = st.number_input('epochs',max_value=None, min_value=1, value=2)
if st.session_state.snn:
# batch_size = 0
# count = st.number_input('repeat count',max_value=None, min_value=0, value=1)
txt = 'repeat count'
else:
txt = 'batch_size'
# count = 0
batch_size = st.number_input(txt,max_value=None, min_value=0, value=10)
# validation_split = st.number_input('validation_split',max_value=None, min_value=0.0, value=0.1)
return optimizer,loss,epochs,batch_size
def run_model(model,loss,optimizer,epochs,batch_size):
# print(model.summary())
print("Initialize epochs:", epochs)
try:
if st.session_state.snn:
if loss == 'categorical_crossentropy':
model.compile(loss = tf.keras.losses.CategoricalCrossentropy(from_logits=True),
optimizer = optimizer,
metrics = ['accuracy'])
if loss == 'binary_crossentropy':
model.compile(loss = tf.keras.losses.BinaryCrossentropy(from_logits=True),
optimizer = optimizer,
metrics = ['accuracy'])
if loss == 'sparse_categorical_crossentropy':
model.compile(loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer = optimizer,
metrics = ['sparse_categorical_accuracy'])
if loss == 'poisson':
model.compile(loss = tf.keras.losses.Poisson(from_logits=True),
optimizer = optimizer,
metrics = ['accuracy'])
model_fit = model.fit(st.session_state.dataset_generator.repeat(count=1),
epochs=epochs,
validation_data=st.session_state.dataset_generator_test.repeat(count=1))
else:
model.compile(loss = loss,
optimizer = optimizer,
metrics = ['accuracy'])
model_fit = model.fit(st.session_state.x_train, st.session_state.y_train,
epochs=epochs,
batch_size=batch_size,
validation_data=(st.session_state.x_test, st.session_state.y_test))
# if st.session_state.snn:
# print("Hey hey People!!!", len(st.session_state.x_train))
# print("I am at the sesion state")
# print("1122", max(st.session_state["x_train"]))
# print('SNN training epochs:', epochs)
# print(epochs)
# model_fit = model.fit(st.session_state.dataset_generator.repeat(count=1),
# epochs=epochs,
# validation_data=st.session_state.dataset_generator_test.repeat(count=1))
# else:
# print("Initialize epochs non spike:", epochs)
# model_fit = model.fit(st.session_state.x_train, st.session_state.y_train,
# epochs = epochs,
# batch_size = batch_size,
# validation_data=(st.session_state.x_test, st.session_state.y_test))
# st.snow()
model.save_weights('Model_Weights.h5')
return model_fit
except Exception as ex:
st.error(ex)
def cal_result(model):
if st.session_state.snn:
st.session_state.score = model.evaluate(st.session_state.dataset_generator_test, verbose=2)
else:
st.session_state.score = model.evaluate(st.session_state.x_test, st.session_state.y_test, verbose=0)
y_test_class = np.argmax(st.session_state.y_test, axis=1)
y_pred = np.argmax(model.predict(st.session_state.x_test, verbose=0),axis=1)
# precision tp / (tp + fp)
precision = precision_score(y_test_class, y_pred, average='weighted', labels=np.unique(y_pred))
# recall: tp / (tp + fn)
recall = recall_score(y_test_class, y_pred, average='weighted', labels=np.unique(y_pred))
# f1: 2 tp / (2 tp + fp + fn)
f1 = f1_score(y_test_class, y_pred, average='weighted', labels=np.unique(y_pred))
config = model.get_config()
st.session_state.Store["Neural network config"].append(config)
st.session_state.Store["loss"].append(st.session_state.score[0])
st.session_state.Store["precision"].append(precision)
st.session_state.Store["accuracy"].append(st.session_state.score[1])
st.session_state.Store["recall"].append(recall)
st.session_state.Store["f1 score"].append(f1)
st.session_state.Store["Dataset"].append(st.session_state.dataset)
def show_results(model_fit):
st.subheader('Results')
st.write("Test loss:", st.session_state.score[0])
st.write("Test accuracy:", st.session_state.score[1])
col1, col2= st.columns([1,1])
with col1:
fig = plt.figure()
plt.plot(model_fit.history['loss'], label='train')
plt.plot(model_fit.history['val_loss'], label='val')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend()
st.pyplot(fig)
with col2:
fig = plt.figure()
plt.plot(model_fit.history['accuracy'], label='train')
plt.plot(model_fit.history['val_accuracy'], label='val')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend()
st.pyplot(fig)
if 'nn_submit' not in st.session_state:
st.session_state.nn_submit = False
# if st.session_state.submittedLayers!=[] and st.session_state.nn_type == 'Software':-
# # container for showing added layers
# with st.container():
# st.subheader("Added Layers")
# show_layers(st.session_state.submittedLayers)
# reset = st.button('Reset')
# # resetting the submittedLayers and so the model too
# if reset:
# st.session_state.Smodel = Sequential(tf.keras.layers.InputLayer(input_shape=st.session_state.ip_shape))
# st.session_state.submittedLayers = []
# optimizer,loss,epochs,batch_size = show_compile_fit()
# col1, col2, col3 = st.columns([2,1,2])
# with col2:
# submitAll = st.button('Submit all')
# # if submitAll:
# # show_results(st.session_state.Smodel)
# if submitAll:
# st.session_state.model_fit = run_model(st.session_state.Smodel,loss,optimizer,epochs,batch_size)
# cal_result(st.session_state.Smodel)
# st.session_state.nn_submit = True
# if st.session_state.nn_submit:
# show_results(st.session_state.model_fit)
# if st.session_state.Store!={}:
# df=pd.DataFrame(st.session_state.Store)
# st.table(df)
if 'setup' not in st.session_state:
st.session_state.setup = False
if 'csv' not in st.session_state:
st.session_state.csv = None
def set_hardware_weights(model):
st.text("")
st.text("")
col1,col2 = st.columns(2)
with col1:
mem_txt = "Select the memristor "#+str(mem)
memristor_model = st.radio(mem_txt, ('Joglekar','Prodromakis','Biolek','Zha'),key=mem_txt)
if memristor_model=='Joglekar' or memristor_model=='Biolek':
p=st.number_input('Enter p value', value = 1)
j=1
if memristor_model=='Prodromakis' or memristor_model=='Zha':
p=st.number_input('Enter p value', value=7)
j=st.number_input('Enter j value', value=1)
Amplitude = st.number_input('Amplitude', value = 1)
freq = st.number_input('Frequency', value = 1)
with col2:
Ron_txt = "Ron"#+str(mem)
Ron = st.number_input('Set Ron value', min_value=100,max_value=16000, value=100,key=Ron_txt)
Roff_txt = "Roff"#+str(mem)
Roff = st.number_input('Set Roff value', min_value=100, max_value=16000, value=16000, key=Roff_txt)
part_txt = "part"#+str(mem)
Rint = st.number_input('Set Rint value', min_value=100, max_value=16000, value=11000)
partition = st.slider('Define the Quatization value here',2,64, key=part_txt)
sample_rate = st.number_input('Sample Rate', value = 500)
# st.write('Would you like to add some variabilities? Add them below...')
# Ron_Roff_txt = "Ron_Roff"#+str(mem)
Ron_Roff_aging = st.checkbox("Ron-Roff Aging")
c1,c2,c3 = st.columns((1,2,1))
if Ron_Roff_aging:
with c2:
st.caption('Aging value can be positive or negative')
Ron_aging = st.number_input('Enter aging % (b/w 0-20)',key='ronAge',value=0)
Roff_aging = st.number_input('Enter aging % (b/w 0-20)',key='roffAge',value=0)
else:
Ron_aging = 0
Roff_aging = 0
c1,c2,c3 = st.columns((1,1,1))
with c2:
setup = st.button('Set up Memristor')
if setup:
st.session_state.setup = True
if setup:
st.text("")
st.text("")
# Get the current weights of the neural network
old_weights = model.get_weights()
old_weight_array = np.concatenate([arr.flatten() for arr in old_weights])
# Calculate the minimum and maximum values of the old weights
old_weight_min = np.amin(np.abs(old_weight_array))
old_weight_max = np.amax(np.abs(old_weight_array))
lyr=0
for layer in model.layers:
lyr += 1
if layer.__class__.__name__ == 'Dense' or layer.__class__.__name__ =='Conv2D' or layer.__class__.__name__ == 'LSTM':
try:
shape = layer.get_weights()[0].shape
txt = "Weights for the layer "+layer.name+" of shape "+str(shape)
st.subheader(txt)
old_weights = list(layer.get_weights()[0])
st.session_state.old_weights = []
st.session_state.old_bias = []
idx = 0
if layer.__class__.__name__ == 'LSTM':
# old_weights = layer.trainable_weights[0]
# old_weights = old_weights.numpy()
# shape = layer.trainable_weights[0].shape
# old_bias = layer.trainable_weights[1]
st.session_state.old_weights = old_weights
st.session_state.new_weights = []
st.session_state.new_u = []
st.session_state.old_u = layer.get_weights()[1]
shape_u = st.session_state.old_u.shape
old_bias = layer.get_weights()[2]
for weight in list(old_weights):
Mem = mem.memristor_models(Roff,Ron,Rint,Amplitude,freq,1,sample_rate,p,j,memristor_model)
Mem.variability(partition,Ron_aging,Roff_aging)
weight = (list(weight))
Mem.neural_weight([weight], old_weight_max, old_weight_min)
st.session_state.new_weights.append(Mem.new_weights())
for weight in list(st.session_state.old_u):
Mem = mem.memristor_models(Roff,Ron,Rint,Amplitude,freq,1,sample_rate,p,j,memristor_model)
Mem.variability(partition,Ron_aging,Roff_aging)
weight = (list(weight))
Mem.neural_weight([weight], old_weight_max, old_weight_min)
st.session_state.new_u.append(Mem.new_weights())
else:
old_bias = layer.get_weights()[1]
if layer.__class__.__name__ == 'Conv2D':
st.session_state.old_weights = old_weights
st.session_state.new_weights = []
for row in old_weights:
# st.session_state.old_weights.append([])
st.session_state.new_weights.append([])
for weights in row:
for weight in weights:
# st.session_state.old_weights[idx].append([weight])
Mem = mem.memristor_models(Roff,Ron,Rint,Amplitude,freq,1,sample_rate,p,j,memristor_model)
Mem.variability(partition,Ron_aging,Roff_aging)
weight = (list(weight))
Mem.neural_weight([weight], old_weight_max, old_weight_min)
st.session_state.new_weights[idx].append(Mem.new_weights())
idx += 1
if layer.__class__.__name__ == 'Dense':
for row in old_weights:
st.session_state.old_weights.append([])
for weight in row:
# new_w_txt = "Set new weight "+str(memW)+' for '+layer.__class__.__name__+' '+layer.name
# new_w = st.number_input(new_w_txt, key=new_w_txt)
# set_txt = "set"+str(memW)
# memW += 1
st.session_state.old_weights[idx].append(weight)
idx += 1
# st.write('***')
Mem = mem.memristor_models(Roff,Ron,Rint,Amplitude,freq,1,sample_rate,p,j,memristor_model)
Mem.variability(partition,Ron_aging,Roff_aging)
Mem.neural_weight(st.session_state.old_weights, old_weight_max, old_weight_min)
st.session_state.new_weights = Mem.new_weights()
for bias in old_bias:
# new_b_txt = "Set new bias "+str(memB)+' for '+layer.__class__.__name__+' '+layer.name
# new_b = st.number_input(new_b_txt, key=new_b_txt)
# set_txt = "setb"+str(memB)
# memB += 1
#st.write(":heavy_minus_sign:" * 30)
st.session_state.old_bias.append(bias)
Mem = mem.memristor_models(Roff,Ron,Rint,Amplitude,freq,1,sample_rate,p,j,memristor_model)
Mem.variability(partition,Ron_aging,Roff_aging)
Mem.neural_weight([st.session_state.old_bias], old_weight_max, old_weight_min)
st.session_state.new_bias = Mem.new_weights()[0]
C1,C2 = st.columns(2)
with C1:
st.write(layer.name,": Weights", np.array(st.session_state.old_weights))
if layer.__class__.__name__ == 'LSTM':
st.write(layer.name,":hidden Weights", np.array(st.session_state.old_u))
st.write(layer.name,": Biases", np.array(st.session_state.old_bias))
with C2:
st.session_state.new_weights = np.array(st.session_state.new_weights).reshape(shape)
st.write(layer.name,": mapped Weights", st.session_state.new_weights)
if layer.__class__.__name__ == 'LSTM':
st.session_state.new_u = np.array(st.session_state.new_u).reshape(shape_u)
st.write(layer.name,":mapped hidden Weights", st.session_state.new_u)
st.write(layer.name,": mapped Biases", np.array(st.session_state.new_bias))
# apply = st.button("Apply mapped values",key=lyr)
# if apply:
st.session_state.new_weights = np.array(st.session_state.new_weights).reshape(shape)
if layer.__class__.__name__ == 'LSTM':
layer.set_weights([st.session_state.new_weights, st.session_state.new_u, np.array(st.session_state.new_bias)])
else:
layer.set_weights([st.session_state.new_weights, np.array(st.session_state.new_bias)])
# st.success('Successfully applied new mapped wights and biases')
except Exception as ex:
st.error(ex)
print(ex)
def get_weights_and_biases(model):
# Get the current weights of the neural network
old_weights = np.array(model.get_weights(), dtype=object)
# print(len(old_weights))
# print(old_weights)
# for i in old_weights:
# print(len(i))
df = pd.DataFrame(old_weights)
return df
@st.cache
def convert_df(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return df.to_csv().encode('utf-8')
if st.session_state.submittedLayers!=[]:
st.subheader('Added Layers')
show_layers(st.session_state.submittedLayers)
reset = st.button('Reset')
# resetting the submittedLayers and so the model too
if reset:
if st.session_state.snn:
st.session_state.model = Sequential(TD(tf.keras.layers.InputLayer(input_shape=st.session_state.ip_shape)))
st.session_state.submittedLayers = []
else:
st.session_state.model = Sequential(tf.keras.layers.InputLayer(input_shape=st.session_state.ip_shape))
st.session_state.submittedLayers = []
optimizer,loss,epochs,batch_size = show_compile_fit()
col1, col2, col3 = st.columns([2,1,2])
with col2:
submitAll = st.button('Submit all')
if submitAll:
st.session_state.model_fit = run_model(st.session_state.model,loss,optimizer,epochs,batch_size)
cal_result(st.session_state.model)
st.session_state.nn_submit = True
df = get_weights_and_biases(st.session_state.model)
st.session_state.csv = convert_df(df)
col1, col2, col3 = st.columns([2,2,2])
with col2:
if st.session_state.csv:
st.download_button(
label="Download weights as CSV",
data= st.session_state.csv,
file_name='weights_df.csv',
mime='text/csv',
)
if st.session_state.nn_submit:
show_results(st.session_state.model_fit)
restore = st.button('Restore trained weights')
if restore:
st.session_state.model.load_weights('Model_Weights.h5')
if st.session_state.nn_type == 'Hardware':
set_hardware_weights(st.session_state.model)
c1,c2,c3 = st.columns(3)
with c2:
evaluate = st.button("Evaluate")
if evaluate:
cal_result(st.session_state.model)
if st.session_state.Store!={}:
df=pd.DataFrame(st.session_state.Store)
st.table(df)
|