TALHA51 commited on
Commit
eacb2c9
·
verified ·
1 Parent(s): 87d64a1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +267 -64
app.py CHANGED
@@ -1,72 +1,275 @@
 
 
1
  import gradio as gr
 
 
 
2
  import requests
3
- from PIL import Image
4
- from io import BytesIO
5
-
6
- # Hugging Face Inference API'de çalışan örnek modeller
7
- MODELS = {
8
- "Face Detection": "https://api-inference.huggingface.co/models/retinaface", # örnek
9
- "Background Removal": "https://api-inference.huggingface.co/models/briaai/RMBG-1.4",
10
- "Beautification (GAN)": "https://api-inference.huggingface.co/models/beautygan", # örnek
11
- "Virtual Try-On": "https://api-inference.huggingface.co/models/cp-vton", # örnek
12
- "Style Transfer": "https://api-inference.huggingface.co/models/cyclegan" # örnek
13
- }
14
 
15
- API_TOKEN = "BURAYA_HF_TOKENINI_YAZ" # Settings → Access Tokens
16
 
17
- headers = {"Authorization": f"Bearer {API_TOKEN}",
18
- "Content-Type": "application/octet-stream"}
 
 
 
 
 
 
 
 
 
19
 
20
- def query(model_url, pil_image: Image.Image) -> Image.Image:
21
- """Bir modeli HF Inference API üzerinden çağır."""
 
 
 
 
 
 
 
 
22
  try:
23
- buf = BytesIO()
24
- pil_image.save(buf, format="PNG")
25
- resp = requests.post(model_url, headers=headers, data=buf.getvalue(), timeout=60)
26
- resp.raise_for_status()
 
 
 
 
 
 
 
 
 
27
 
28
- # Birçok görsel modeli doğrudan görüntü döndürür
29
- content = resp.content
 
 
 
 
 
30
  try:
31
- return Image.open(BytesIO(content)).convert("RGBA")
32
- except Exception:
33
- # Bazı modeller JSON/base64 döndürebilir -> desteklenmiyorsa orijinali ver
34
- return pil_image
35
- except Exception:
36
- # Model hazır değil/uygun değilse kırılmasın, olduğu gibi geçsin
37
- return pil_image
38
-
39
- def pipeline(image, cloth=None):
40
- # 1) Face/Body Detection (çıktıyı sadece akışa sokuyoruz)
41
- img1 = query(MODELS["Face Detection"], image)
42
-
43
- # 2) Background Removal
44
- img2 = query(MODELS["Background Removal"], img1)
45
-
46
- # 3) Beautification
47
- img3 = query(MODELS["Beautification (GAN)"], img2)
48
-
49
- # 4) Virtual Try-On (kıyafet opsiyonel)
50
- if cloth is not None:
51
- img4 = query(MODELS["Virtual Try-On"], img3)
52
- else:
53
- img4 = img3
54
-
55
- # 5) Style Transfer
56
- img5 = query(MODELS["Style Transfer"], img4)
57
-
58
- return img5
59
-
60
- demo = gr.Interface(
61
- fn=pipeline,
62
- inputs=[
63
- gr.Image(type="pil", label="Fotoğraf (zorunlu)"),
64
- gr.Image(type="pil", label="Kıyafet (opsiyonel)")
65
- ],
66
- outputs=gr.Image(type="pil", label="Çıktı"),
67
- title="AI Fashion & Beauty Pipeline",
68
- description="Fotoğrafını yükle → Yüz algılama → Arka plan temizleme → Güzelleştirme → (İsteğe bağlı) Kıyafet → Stil filtresi"
69
- )
70
-
71
- if __name__ == "__main__":
72
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
  import gradio as gr
4
+ import numpy as np
5
+ import random
6
+ import base64
7
  import requests
8
+ import json
9
+ import time
 
 
 
 
 
 
 
 
 
10
 
 
11
 
12
+ def tryon(person_img, garment_img, seed, randomize_seed):
13
+ post_start_time = time.time()
14
+ if person_img is None or garment_img is None:
15
+ gr.Warning("Empty image")
16
+ return None, None, "Empty image"
17
+ if randomize_seed:
18
+ seed = random.randint(0, MAX_SEED)
19
+ encoded_person_img = cv2.imencode('.jpg', cv2.cvtColor(person_img, cv2.COLOR_RGB2BGR))[1].tobytes()
20
+ encoded_person_img = base64.b64encode(encoded_person_img).decode('utf-8')
21
+ encoded_garment_img = cv2.imencode('.jpg', cv2.cvtColor(garment_img, cv2.COLOR_RGB2BGR))[1].tobytes()
22
+ encoded_garment_img = base64.b64encode(encoded_garment_img).decode('utf-8')
23
 
24
+ url = "http://" + os.environ['tryon_url'] + "Submit"
25
+ token = os.environ['token']
26
+ cookie = os.environ['Cookie']
27
+ referer = os.environ['referer']
28
+ headers = {'Content-Type': 'application/json', 'token': token, 'Cookie': cookie, 'referer': referer}
29
+ data = {
30
+ "clothImage": encoded_garment_img,
31
+ "humanImage": encoded_person_img,
32
+ "seed": seed
33
+ }
34
  try:
35
+ response = requests.post(url, headers=headers, data=json.dumps(data), timeout=50)
36
+ # print("post response code", response.status_code)
37
+ if response.status_code == 200:
38
+ result = response.json()['result']
39
+ status = result['status']
40
+ if status == "success":
41
+ uuid = result['result']
42
+ # print(uuid)
43
+ except Exception as err:
44
+ print(f"Post Exception Error: {err}")
45
+ raise gr.Error("Too many users, please try again later")
46
+ post_end_time = time.time()
47
+ print(f"post time used: {post_end_time-post_start_time}")
48
 
49
+ get_start_time =time.time()
50
+ time.sleep(9)
51
+ Max_Retry = 12
52
+ result_img = None
53
+ info = ""
54
+ err_log = ""
55
+ for i in range(Max_Retry):
56
  try:
57
+ url = "http://" + os.environ['tryon_url'] + "Query?taskId=" + uuid
58
+ response = requests.get(url, headers=headers, timeout=20)
59
+ # print("get response code", response.status_code)
60
+ if response.status_code == 200:
61
+ result = response.json()['result']
62
+ status = result['status']
63
+ if status == "success":
64
+ result = base64.b64decode(result['result'])
65
+ result_np = np.frombuffer(result, np.uint8)
66
+ result_img = cv2.imdecode(result_np, cv2.IMREAD_UNCHANGED)
67
+ result_img = cv2.cvtColor(result_img, cv2.COLOR_RGB2BGR)
68
+ info = "Success"
69
+ break
70
+ elif status == "error":
71
+ err_log = f"Status is Error"
72
+ info = "Error"
73
+ break
74
+ else:
75
+ # print(response.text)
76
+ err_log = "URL error, pleace contact the admin"
77
+ info = "URL error, pleace contact the admin"
78
+ break
79
+ except requests.exceptions.ReadTimeout:
80
+ err_log = "Http Timeout"
81
+ info = "Http Timeout, please try again later"
82
+ except Exception as err:
83
+ err_log = f"Get Exception Error: {err}"
84
+ time.sleep(1)
85
+ get_end_time = time.time()
86
+ print(f"get time used: {get_end_time-get_start_time}")
87
+ print(f"all time used: {get_end_time-get_start_time+post_end_time-post_start_time}")
88
+ if info == "":
89
+ err_log = f"No image after {Max_Retry} retries"
90
+ info = "Too many users, please try again later"
91
+ if info != "Success":
92
+ print(f"Error Log: {err_log}")
93
+ gr.Warning("Too many users, please try again later")
94
+
95
+ return result_img, seed, info
96
+
97
+ def start_tryon(person_img, garment_img, seed, randomize_seed):
98
+ start_time = time.time()
99
+ if person_img is None or garment_img is None:
100
+ return None, None, "Empty image"
101
+ if randomize_seed:
102
+ seed = random.randint(0, MAX_SEED)
103
+ encoded_person_img = cv2.imencode('.jpg', cv2.cvtColor(person_img, cv2.COLOR_RGB2BGR))[1].tobytes()
104
+ encoded_person_img = base64.b64encode(encoded_person_img).decode('utf-8')
105
+ encoded_garment_img = cv2.imencode('.jpg', cv2.cvtColor(garment_img, cv2.COLOR_RGB2BGR))[1].tobytes()
106
+ encoded_garment_img = base64.b64encode(encoded_garment_img).decode('utf-8')
107
+
108
+ url = "http://" + os.environ['tryon_url']
109
+ token = os.environ['token']
110
+ cookie = os.environ['Cookie']
111
+ referer = os.environ['referer']
112
+
113
+ headers = {'Content-Type': 'application/json', 'token': token, 'Cookie': cookie, 'referer': referer}
114
+ data = {
115
+ "clothImage": encoded_garment_img,
116
+ "humanImage": encoded_person_img,
117
+ "seed": seed
118
+ }
119
+
120
+ result_img = None
121
+ try:
122
+ session = requests.Session()
123
+ response = session.post(url, headers=headers, data=json.dumps(data), timeout=60)
124
+ print("response code", response.status_code)
125
+ if response.status_code == 200:
126
+ result = response.json()['result']
127
+ status = result['status']
128
+ if status == "success":
129
+ result = base64.b64decode(result['result'])
130
+ result_np = np.frombuffer(result, np.uint8)
131
+ result_img = cv2.imdecode(result_np, cv2.IMREAD_UNCHANGED)
132
+ result_img = cv2.cvtColor(result_img, cv2.COLOR_RGB2BGR)
133
+ info = "Success"
134
+ else:
135
+ info = "Try again latter"
136
+ else:
137
+ print(response.text)
138
+ info = "URL error, pleace contact the admin"
139
+ except requests.exceptions.ReadTimeout:
140
+ print("timeout")
141
+ info = "Too many users, please try again later"
142
+ raise gr.Error("Too many users, please try again later")
143
+ except Exception as err:
144
+ print(f"其他错误: {err}")
145
+ info = "Error, pleace contact the admin"
146
+ end_time = time.time()
147
+ print(f"time used: {end_time-start_time}")
148
+
149
+ return result_img, seed, info
150
+
151
+ MAX_SEED = 999999
152
+
153
+ example_path = os.path.join(os.path.dirname(__file__), 'assets')
154
+
155
+ garm_list = os.listdir(os.path.join(example_path,"cloth"))
156
+ garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
157
+
158
+ human_list = os.listdir(os.path.join(example_path,"human"))
159
+ human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
160
+
161
+ css="""
162
+ #col-left {
163
+ margin: 0 auto;
164
+ max-width: 430px;
165
+ }
166
+ #col-mid {
167
+ margin: 0 auto;
168
+ max-width: 430px;
169
+ }
170
+ #col-right {
171
+ margin: 0 auto;
172
+ max-width: 430px;
173
+ }
174
+ #col-showcase {
175
+ margin: 0 auto;
176
+ max-width: 1100px;
177
+ }
178
+ #button {
179
+ color: blue;
180
+ }
181
+ """
182
+
183
+ def load_description(fp):
184
+ with open(fp, 'r', encoding='utf-8') as f:
185
+ content = f.read()
186
+ return content
187
+
188
+ def change_imgs(image1, image2):
189
+ return image1, image2
190
+
191
+ with gr.Blocks(css=css) as Tryon:
192
+ gr.HTML(load_description("assets/title.md"))
193
+ with gr.Row():
194
+ with gr.Column(elem_id = "col-left"):
195
+ gr.HTML("""
196
+ <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
197
+ <div>
198
+ Step 1. Upload a person image ⬇️
199
+ </div>
200
+ </div>
201
+ """)
202
+ with gr.Column(elem_id = "col-mid"):
203
+ gr.HTML("""
204
+ <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
205
+ <div>
206
+ Step 2. Upload a garment image ⬇️
207
+ </div>
208
+ </div>
209
+ """)
210
+ with gr.Column(elem_id = "col-right"):
211
+ gr.HTML("""
212
+ <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
213
+ <div>
214
+ Step 3. Press “Run” to get try-on results
215
+ </div>
216
+ </div>
217
+ """)
218
+ with gr.Row():
219
+ with gr.Column(elem_id = "col-left"):
220
+ imgs = gr.Image(label="Person image", sources='upload', type="numpy")
221
+ # category = gr.Dropdown(label="Garment category", choices=['upper_body', 'lower_body', 'dresses'], value="upper_body")
222
+ example = gr.Examples(
223
+ inputs=imgs,
224
+ examples_per_page=12,
225
+ examples=human_list_path
226
+ )
227
+ with gr.Column(elem_id = "col-mid"):
228
+ garm_img = gr.Image(label="Garment image", sources='upload', type="numpy")
229
+ example = gr.Examples(
230
+ inputs=garm_img,
231
+ examples_per_page=12,
232
+ examples=garm_list_path
233
+ )
234
+ with gr.Column(elem_id = "col-right"):
235
+ image_out = gr.Image(label="Result", show_share_button=False)
236
+ with gr.Row():
237
+ seed = gr.Slider(
238
+ label="Seed",
239
+ minimum=0,
240
+ maximum=MAX_SEED,
241
+ step=1,
242
+ value=0,
243
+ )
244
+ randomize_seed = gr.Checkbox(label="Random seed", value=True)
245
+ with gr.Row():
246
+ seed_used = gr.Number(label="Seed used")
247
+ result_info = gr.Text(label="Response")
248
+ # try_button = gr.Button(value="Run", elem_id="button")
249
+ test_button = gr.Button(value="Run", elem_id="button")
250
+
251
+
252
+ # try_button.click(fn=start_tryon, inputs=[imgs, garm_img, seed, randomize_seed], outputs=[image_out, seed_used, result_info], api_name='tryon',concurrency_limit=10)
253
+ test_button.click(fn=tryon, inputs=[imgs, garm_img, seed, randomize_seed], outputs=[image_out, seed_used, result_info], api_name=False, concurrency_limit=45)
254
+
255
+ with gr.Column(elem_id = "col-showcase"):
256
+ gr.HTML("""
257
+ <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
258
+ <div> </div>
259
+ <br>
260
+ <div>
261
+ Virtual try-on examples in pairs of person and garment images
262
+ </div>
263
+ </div>
264
+ """)
265
+ show_case = gr.Examples(
266
+ examples=[
267
+ ["assets/examples/model2.png", "assets/examples/garment2.png", "assets/examples/result2.png"],
268
+ ["assets/examples/model3.png", "assets/examples/garment3.png", "assets/examples/result3.png"],
269
+ ["assets/examples/model1.png", "assets/examples/garment1.png", "assets/examples/result1.png"],
270
+ ],
271
+ inputs=[imgs, garm_img, image_out],
272
+ label=None
273
+ )
274
+
275
+ Tryon.queue(api_open=False).launch(show_api=False)