Spaces:
Runtime error
Runtime error
TK561
commited on
Commit
·
7d2a98b
1
Parent(s):
7ef81f1
fix: 実際の深度推定機能を実装
Browse files- DepthAnything V2モデルの統合
- Base64画像入力のサポート
- API エンドポイント /api/predict の追加
- 必要な依存関係の追加
- メモリ管理の改善
- app.py +86 -18
- requirements.txt +7 -1
app.py
CHANGED
@@ -1,23 +1,91 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
fn=depth_estimation,
|
14 |
-
inputs=gr.Image(type="pil"),
|
15 |
-
outputs=[
|
16 |
-
gr.Image(label="元画像"),
|
17 |
-
gr.Image(label="深度マップ")
|
18 |
-
],
|
19 |
-
title="深度推定 API",
|
20 |
-
description="テスト中"
|
21 |
-
)
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
import cv2
|
7 |
+
import base64
|
8 |
+
import io
|
9 |
|
10 |
+
class DepthEstimationAPI:
|
11 |
+
def __init__(self):
|
12 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
print(f"Using device: {self.device}")
|
14 |
+
|
15 |
+
model_name = "depth-anything/Depth-Anything-V2-Small-hf"
|
16 |
+
self.processor = AutoImageProcessor.from_pretrained(model_name)
|
17 |
+
self.model = AutoModelForDepthEstimation.from_pretrained(model_name)
|
18 |
+
self.model.to(self.device)
|
19 |
+
self.model.eval()
|
20 |
+
print("Model loaded successfully")
|
21 |
|
22 |
+
def predict(self, image_input):
|
23 |
+
"""Process image and return depth map"""
|
24 |
+
try:
|
25 |
+
# Handle different input types
|
26 |
+
if isinstance(image_input, str):
|
27 |
+
# Base64 encoded image
|
28 |
+
if image_input.startswith('data:image'):
|
29 |
+
header, encoded = image_input.split(',', 1)
|
30 |
+
image_bytes = base64.b64decode(encoded)
|
31 |
+
image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
|
32 |
+
else:
|
33 |
+
# File path
|
34 |
+
image = Image.open(image_input).convert('RGB')
|
35 |
+
else:
|
36 |
+
# PIL Image
|
37 |
+
image = image_input.convert('RGB') if hasattr(image_input, 'convert') else image_input
|
38 |
+
|
39 |
+
# Process image
|
40 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
41 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
42 |
+
|
43 |
+
with torch.no_grad():
|
44 |
+
outputs = self.model(**inputs)
|
45 |
+
depth = outputs.predicted_depth.squeeze().cpu().numpy()
|
46 |
+
|
47 |
+
# Create depth visualization
|
48 |
+
depth_normalized = ((depth - depth.min()) / (depth.max() - depth.min()) * 255).astype(np.uint8)
|
49 |
+
depth_colored = cv2.applyColorMap(depth_normalized, cv2.COLORMAP_VIRIDIS)
|
50 |
+
depth_colored = cv2.cvtColor(depth_colored, cv2.COLOR_BGR2RGB)
|
51 |
+
depth_image = Image.fromarray(depth_colored)
|
52 |
+
|
53 |
+
# Clean up
|
54 |
+
del inputs, outputs, depth, depth_normalized, depth_colored
|
55 |
+
if torch.cuda.is_available():
|
56 |
+
torch.cuda.empty_cache()
|
57 |
+
|
58 |
+
return [image, depth_image]
|
59 |
+
|
60 |
+
except Exception as e:
|
61 |
+
print(f"Error in prediction: {e}")
|
62 |
+
return [None, None]
|
63 |
|
64 |
+
# Initialize API
|
65 |
+
api = DepthEstimationAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
# Create Gradio interface with API support
|
68 |
+
with gr.Blocks() as demo:
|
69 |
+
gr.Markdown("# Depth Estimation API")
|
70 |
+
gr.Markdown("AI-powered depth estimation using DepthAnything V2")
|
71 |
+
|
72 |
+
with gr.Row():
|
73 |
+
with gr.Column():
|
74 |
+
input_image = gr.Image(type="pil", label="Upload Image")
|
75 |
+
submit_btn = gr.Button("Generate Depth Map", variant="primary")
|
76 |
+
|
77 |
+
with gr.Column():
|
78 |
+
output_original = gr.Image(type="pil", label="Original Image")
|
79 |
+
output_depth = gr.Image(type="pil", label="Depth Map")
|
80 |
+
|
81 |
+
# Define the API endpoint
|
82 |
+
submit_btn.click(
|
83 |
+
fn=api.predict,
|
84 |
+
inputs=input_image,
|
85 |
+
outputs=[output_original, output_depth],
|
86 |
+
api_name="predict" # This creates the /api/predict endpoint
|
87 |
+
)
|
88 |
+
|
89 |
+
# Launch with proper settings for Hugging Face Spaces
|
90 |
+
if __name__ == "__main__":
|
91 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
CHANGED
@@ -1 +1,7 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
transformers
|
4 |
+
gradio
|
5 |
+
numpy
|
6 |
+
opencv-python-headless
|
7 |
+
Pillow
|