|
|
import streamlit as st |
|
|
from transformers import pipeline |
|
|
from transformers import AutoModelForSequenceClassification |
|
|
from transformers import AutoTokenizer |
|
|
import torch |
|
|
import numpy as np |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
st.title("yelp2024fall Test") |
|
|
st.write("Enter a sentence for analysis:") |
|
|
|
|
|
user_input = st.text_input("") |
|
|
if user_input: |
|
|
|
|
|
model2 = AutoModelForSequenceClassification.from_pretrained("isom5240/CustomModel_yelp2025L1", |
|
|
num_labels=5) |
|
|
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") |
|
|
|
|
|
inputs = tokenizer(user_input, |
|
|
padding=True, |
|
|
truncation=True, |
|
|
return_tensors='pt') |
|
|
|
|
|
outputs = model2(**inputs) |
|
|
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) |
|
|
predictions = predictions.cpu().detach().numpy() |
|
|
|
|
|
max_index = np.argmax(predictions) |
|
|
st.write(f"result (AutoModel) - Label: {max_index}") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |