File size: 1,403 Bytes
217a100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, DataCollatorForLanguageModeling
from datasets import load_dataset
import os

os.environ["USE_TF"] = "0"

model_name = "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T"
tokenizer = AutoTokenizer.from_pretrained(model_name)
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(model_name)

# Load your text file as a dataset
dataset = load_dataset("text", data_files={"train": "skin_disease_articles_clean.txt"})

# Tokenize the dataset
def tokenize_function(examples):
    return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=128)

tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=["text"])

train_dataset = tokenized_datasets["train"]

data_collator = DataCollatorForLanguageModeling(
    tokenizer=tokenizer, mlm=False
)

training_args = TrainingArguments(
    output_dir="./tinyllama-finetuned-skin",
    overwrite_output_dir=True,
    num_train_epochs=1,
    per_device_train_batch_size=2,
    save_steps=500,
    save_total_limit=2,
    prediction_loss_only=True,
    fp16=True  # Set True if using GPU with float16 support
)

trainer = Trainer(
    model=model,
    args=training_args,
    data_collator=data_collator,
    train_dataset=train_dataset,
)

trainer.train()