Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,37 @@
|
|
|
|
|
| 1 |
from threading import Thread
|
| 2 |
-
|
| 3 |
-
from llava_llama3.model.builder import load_pretrained_model
|
| 4 |
import gradio as gr
|
| 5 |
import torch
|
| 6 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
| 7 |
import argparse
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
import os
|
| 10 |
-
import
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
root_path = os.path.dirname(os.path.abspath(__file__))
|
| 13 |
-
print(root_path)
|
|
|
|
| 14 |
|
| 15 |
parser = argparse.ArgumentParser()
|
| 16 |
-
parser.add_argument("--model-path", type=str, default="
|
| 17 |
-
parser.add_argument("--device", type=str, default="cuda
|
| 18 |
parser.add_argument("--conv-mode", type=str, default="llama_3")
|
| 19 |
parser.add_argument("--temperature", type=float, default=0.7)
|
| 20 |
parser.add_argument("--max-new-tokens", type=int, default=512)
|
|
@@ -22,87 +39,56 @@ parser.add_argument("--load-8bit", action="store_true")
|
|
| 22 |
parser.add_argument("--load-4bit", action="store_true")
|
| 23 |
args = parser.parse_args()
|
| 24 |
|
| 25 |
-
#
|
| 26 |
tokenizer, llava_model, image_processor, context_len = load_pretrained_model(
|
| 27 |
args.model_path,
|
| 28 |
None,
|
| 29 |
'llava_llama3',
|
| 30 |
args.load_8bit,
|
| 31 |
args.load_4bit,
|
| 32 |
-
device=args.device
|
| 33 |
-
)
|
| 34 |
|
| 35 |
-
@spaces.GPU
|
| 36 |
def bot_streaming(message, history):
|
| 37 |
print(message)
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
# Check if there's an image in the current message
|
| 41 |
if message["files"]:
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
image_path = message["files"][-1]["path"]
|
| 45 |
else:
|
| 46 |
-
|
| 47 |
else:
|
| 48 |
-
# If no image in the current message, look in the history for the last image path
|
| 49 |
for hist in history:
|
| 50 |
-
if
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
streamer=streamer,
|
| 73 |
-
image_processor=image_processor, # todo: input model name or path
|
| 74 |
-
context_len=context_len)
|
| 75 |
-
|
| 76 |
-
# Define the function to call `chat_llava` with the given arguments
|
| 77 |
-
def generate_output(generation_kwargs):
|
| 78 |
-
chat_llava(**generation_kwargs)
|
| 79 |
-
|
| 80 |
-
# Start the generation in a separate thread
|
| 81 |
-
thread = Thread(target=generate_output, kwargs=generation_kwargs)
|
| 82 |
thread.start()
|
| 83 |
-
|
| 84 |
-
|
| 85 |
buffer = ""
|
| 86 |
-
|
| 87 |
-
# Allow the generation to start
|
| 88 |
-
time.sleep(0.5)
|
| 89 |
-
|
| 90 |
-
# Iterate over the streamer to handle the incoming text in chunks
|
| 91 |
for new_text in streamer:
|
| 92 |
-
# Look for the end of text token and remove it
|
| 93 |
-
if "<|eot_id|>" in new_text:
|
| 94 |
-
new_text = new_text.split("<|eot_id|>")[0]
|
| 95 |
-
|
| 96 |
-
# Add the new text to the buffer
|
| 97 |
buffer += new_text
|
| 98 |
-
|
| 99 |
-
# Remove the prompt from the generated text (if necessary)
|
| 100 |
-
generated_text_without_prompt = buffer[len(prompt):]
|
| 101 |
-
|
| 102 |
-
# Simulate processing time (optional)
|
| 103 |
time.sleep(0.06)
|
| 104 |
-
|
| 105 |
-
# Yield the current generated text for further processing or display
|
| 106 |
yield generated_text_without_prompt
|
| 107 |
|
| 108 |
chatbot = gr.Chatbot(scale=1)
|
|
@@ -110,10 +96,11 @@ chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeh
|
|
| 110 |
with gr.Blocks(fill_height=True) as demo:
|
| 111 |
gr.ChatInterface(
|
| 112 |
fn=bot_streaming,
|
| 113 |
-
title="FinLLaVA",
|
| 114 |
-
examples=[
|
| 115 |
-
|
| 116 |
-
|
|
|
|
| 117 |
stop_btn="Stop Generation",
|
| 118 |
multimodal=True,
|
| 119 |
textbox=chat_input,
|
|
|
|
| 1 |
+
import time
|
| 2 |
from threading import Thread
|
| 3 |
+
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import torch
|
| 6 |
from PIL import Image
|
| 7 |
+
from transformers import AutoProcessor, LlavaForConditionalGeneration, TextIteratorStreamer, TextStreamer
|
| 8 |
+
|
| 9 |
+
# import spaces
|
| 10 |
import argparse
|
| 11 |
+
|
| 12 |
+
from llava_llama3.model.builder import load_pretrained_model
|
| 13 |
+
from llava_llama3.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
| 14 |
+
from llava_llama3.conversation import conv_templates, SeparatorStyle
|
| 15 |
+
from llava_llama3.utils import disable_torch_init
|
| 16 |
+
from llava_llama3.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path
|
| 17 |
+
from llava_llama3.serve.cli import chat_llava
|
| 18 |
+
|
| 19 |
+
import requests
|
| 20 |
+
from io import BytesIO
|
| 21 |
+
import base64
|
| 22 |
import os
|
| 23 |
+
import glob
|
| 24 |
+
import pandas as pd
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
import json
|
| 27 |
|
| 28 |
root_path = os.path.dirname(os.path.abspath(__file__))
|
| 29 |
+
print(f'\033[92m{root_path}\033[0m')
|
| 30 |
+
os.environ['GRADIO_TEMP_DIR'] = root_path
|
| 31 |
|
| 32 |
parser = argparse.ArgumentParser()
|
| 33 |
+
parser.add_argument("--model-path", type=str, default="/mnt/nvme1n1/toby/LLaVA/checkpoints/0806_onlyllava_llava-finma-8B-v0.4-v8/checkpoint-2000")
|
| 34 |
+
parser.add_argument("--device", type=str, default="cuda")
|
| 35 |
parser.add_argument("--conv-mode", type=str, default="llama_3")
|
| 36 |
parser.add_argument("--temperature", type=float, default=0.7)
|
| 37 |
parser.add_argument("--max-new-tokens", type=int, default=512)
|
|
|
|
| 39 |
parser.add_argument("--load-4bit", action="store_true")
|
| 40 |
args = parser.parse_args()
|
| 41 |
|
| 42 |
+
# Load model
|
| 43 |
tokenizer, llava_model, image_processor, context_len = load_pretrained_model(
|
| 44 |
args.model_path,
|
| 45 |
None,
|
| 46 |
'llava_llama3',
|
| 47 |
args.load_8bit,
|
| 48 |
args.load_4bit,
|
| 49 |
+
device=args.device)
|
|
|
|
| 50 |
|
|
|
|
| 51 |
def bot_streaming(message, history):
|
| 52 |
print(message)
|
| 53 |
+
image_file = None
|
|
|
|
|
|
|
| 54 |
if message["files"]:
|
| 55 |
+
if type(message["files"][-1]) == dict:
|
| 56 |
+
image_file = message["files"][-1]["path"]
|
|
|
|
| 57 |
else:
|
| 58 |
+
image_file = message["files"][-1]
|
| 59 |
else:
|
|
|
|
| 60 |
for hist in history:
|
| 61 |
+
if type(hist[0]) == tuple:
|
| 62 |
+
image_file = hist[0][0]
|
| 63 |
+
|
| 64 |
+
if image_file is None:
|
| 65 |
+
gr.Error("You need to upload an image for LLaVA to work.")
|
| 66 |
+
return
|
| 67 |
|
| 68 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 69 |
+
def generate():
|
| 70 |
+
print('\033[92mRunning chat\033[0m')
|
| 71 |
+
output = chat_llava(
|
| 72 |
+
args=args,
|
| 73 |
+
image_file=image_file,
|
| 74 |
+
text=message['text'],
|
| 75 |
+
tokenizer=tokenizer,
|
| 76 |
+
model=llava_model,
|
| 77 |
+
image_processor=image_processor,
|
| 78 |
+
context_len=context_len,
|
| 79 |
+
streamer=streamer)
|
| 80 |
+
return output
|
| 81 |
+
|
| 82 |
+
thread = Thread(target=generate)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
thread.start()
|
| 84 |
+
# thread.join()
|
| 85 |
+
|
| 86 |
buffer = ""
|
| 87 |
+
# output = generate()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
for new_text in streamer:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
buffer += new_text
|
| 90 |
+
generated_text_without_prompt = buffer
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
time.sleep(0.06)
|
|
|
|
|
|
|
| 92 |
yield generated_text_without_prompt
|
| 93 |
|
| 94 |
chatbot = gr.Chatbot(scale=1)
|
|
|
|
| 96 |
with gr.Blocks(fill_height=True) as demo:
|
| 97 |
gr.ChatInterface(
|
| 98 |
fn=bot_streaming,
|
| 99 |
+
title="FinLLaVA Demo",
|
| 100 |
+
examples=[
|
| 101 |
+
{"text": "What is in this picture?", "files": ["http://images.cocodataset.org/val2017/000000039769.jpg"]},
|
| 102 |
+
],
|
| 103 |
+
description="",
|
| 104 |
stop_btn="Stop Generation",
|
| 105 |
multimodal=True,
|
| 106 |
textbox=chat_input,
|