Spaces:
Running
on
L40S
Running
on
L40S
updated
Browse files
app.py
CHANGED
|
@@ -13,7 +13,14 @@ from transformers import AutoProcessor, pipeline
|
|
| 13 |
from elastic_models.transformers import MusicgenForConditionalGeneration
|
| 14 |
|
| 15 |
MODEL_CONFIG = {
|
| 16 |
-
'cost_per_hour': 1.8, # $1.8 per hour
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
}
|
| 18 |
|
| 19 |
original_time_cache = {"original_time": 22.57}
|
|
@@ -256,6 +263,13 @@ def calculate_cost_savings(compressed_time, original_time):
|
|
| 256 |
}
|
| 257 |
|
| 258 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
def get_cache_key(prompt, duration, guidance_scale):
|
| 260 |
return f"{hash(prompt)}_{duration}_{guidance_scale}"
|
| 261 |
|
|
@@ -266,10 +280,11 @@ def generate_music_batch(text_prompt, duration=10, guidance_scale=3.0, model_mod
|
|
| 266 |
generator, processor = load_model()
|
| 267 |
model_name = "Compressed (S)"
|
| 268 |
|
| 269 |
-
print(f"[GENERATION] Starting
|
| 270 |
print(f"[GENERATION] Prompt: '{text_prompt}'")
|
| 271 |
print(f"[GENERATION] Duration: {duration}s")
|
| 272 |
print(f"[GENERATION] Guidance scale: {guidance_scale}")
|
|
|
|
| 273 |
|
| 274 |
cleanup_gpu()
|
| 275 |
set_seed(42)
|
|
@@ -285,31 +300,33 @@ def generate_music_batch(text_prompt, duration=10, guidance_scale=3.0, model_mod
|
|
| 285 |
'cache_implementation': 'paged',
|
| 286 |
}
|
| 287 |
|
| 288 |
-
|
|
|
|
|
|
|
| 289 |
start_time = time.time()
|
| 290 |
outputs = generator(
|
| 291 |
prompts,
|
| 292 |
-
batch_size=
|
| 293 |
generate_kwargs=generation_params
|
| 294 |
)
|
| 295 |
generation_time = time.time() - start_time
|
| 296 |
|
| 297 |
-
print(f"[GENERATION]
|
| 298 |
|
| 299 |
audio_variants = []
|
| 300 |
sample_rate = outputs[0]['sampling_rate']
|
| 301 |
-
|
| 302 |
for i, output in enumerate(outputs):
|
| 303 |
audio_data = output['audio']
|
| 304 |
-
|
| 305 |
print(f"[GENERATION] Processing variant {i + 1} audio shape: {audio_data.shape}")
|
| 306 |
-
|
| 307 |
if hasattr(audio_data, 'cpu'):
|
| 308 |
audio_data = audio_data.cpu().numpy()
|
| 309 |
|
| 310 |
if len(audio_data.shape) == 3:
|
| 311 |
audio_data = audio_data[0]
|
| 312 |
-
|
| 313 |
if len(audio_data.shape) == 2:
|
| 314 |
if audio_data.shape[0] < audio_data.shape[1]:
|
| 315 |
audio_data = audio_data.T
|
|
@@ -317,58 +334,26 @@ def generate_music_batch(text_prompt, duration=10, guidance_scale=3.0, model_mod
|
|
| 317 |
audio_data = audio_data[:, 0]
|
| 318 |
else:
|
| 319 |
audio_data = audio_data.flatten()
|
| 320 |
-
|
| 321 |
audio_data = audio_data.flatten()
|
| 322 |
-
|
| 323 |
max_val = np.max(np.abs(audio_data))
|
| 324 |
if max_val > 0:
|
| 325 |
audio_data = audio_data / max_val * 0.95
|
| 326 |
-
|
| 327 |
audio_data = (audio_data * 32767).astype(np.int16)
|
| 328 |
audio_variants.append((sample_rate, audio_data))
|
| 329 |
-
|
| 330 |
print(f"[GENERATION] Variant {i + 1} final shape: {audio_data.shape}")
|
| 331 |
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
if "original_time" in original_time_cache:
|
| 335 |
-
original_time = original_time_cache["original_time"]
|
| 336 |
-
cost_info = calculate_cost_savings(generation_time, original_time)
|
| 337 |
-
|
| 338 |
-
comparison_message = f"💰 Cost Savings: ${cost_info['savings']:.4f} ({cost_info['savings_percent']:.1f}%) - Compressed: ${cost_info['compressed_cost']:.4f} vs Original: ${cost_info['original_cost']:.4f}"
|
| 339 |
-
print(f"[COST] Savings: ${cost_info['savings']:.4f} ({cost_info['savings_percent']:.1f}%)")
|
| 340 |
-
else:
|
| 341 |
-
try:
|
| 342 |
-
print(f"[TIMING] Measuring original model speed for comparison...")
|
| 343 |
-
original_generator, original_processor = load_original_model()
|
| 344 |
-
|
| 345 |
-
original_start = time.time()
|
| 346 |
-
original_outputs = original_generator(
|
| 347 |
-
prompts,
|
| 348 |
-
batch_size=4,
|
| 349 |
-
generate_kwargs=generation_params
|
| 350 |
-
)
|
| 351 |
-
original_time = time.time() - original_start
|
| 352 |
-
|
| 353 |
-
original_time_cache[cache_key] = original_time
|
| 354 |
-
|
| 355 |
-
cost_info = calculate_cost_savings(generation_time, original_time)
|
| 356 |
-
comparison_message = f"💰 Cost Savings: ${cost_info['savings']:.4f} ({cost_info['savings_percent']:.1f}%) - Compressed: ${cost_info['compressed_cost']:.4f} vs Original: ${cost_info['original_cost']:.4f}"
|
| 357 |
-
print(
|
| 358 |
-
f"[COST] First comparison - Savings: ${cost_info['savings']:.4f} ({cost_info['savings_percent']:.1f}%)")
|
| 359 |
-
print(f"[TIMING] Original: {original_time:.2f}s, Compressed: {generation_time:.2f}s")
|
| 360 |
-
|
| 361 |
-
del original_generator, original_processor
|
| 362 |
-
cleanup_gpu()
|
| 363 |
-
print(f"[CLEANUP] Original model cleaned up after timing measurement")
|
| 364 |
-
|
| 365 |
-
except Exception as e:
|
| 366 |
-
print(f"[WARNING] Could not measure original timing: {e}")
|
| 367 |
-
compressed_cost = calculate_generation_cost(generation_time, 'S')
|
| 368 |
-
comparison_message = f"💸 Compressed Cost: ${compressed_cost:.4f} (could not compare with original)"
|
| 369 |
-
|
| 370 |
-
generation_info = f"✅ Generated 4 variants in {generation_time:.2f}s\n{comparison_message}"
|
| 371 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
return audio_variants[0], audio_variants[1], audio_variants[2], audio_variants[3], generation_info
|
| 373 |
|
| 374 |
except Exception as e:
|
|
@@ -378,63 +363,71 @@ def generate_music_batch(text_prompt, duration=10, guidance_scale=3.0, model_mod
|
|
| 378 |
return None, None, None, None, error_msg
|
| 379 |
|
| 380 |
|
| 381 |
-
with gr.Blocks(title="MusicGen Large - Music Generation") as demo:
|
| 382 |
gr.Markdown("# 🎵 MusicGen Large Music Generator")
|
|
|
|
| 383 |
gr.Markdown(
|
| 384 |
-
"Generate music from text descriptions using Facebook's MusicGen
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
with gr.Row():
|
| 396 |
-
duration = gr.Slider(
|
| 397 |
-
minimum=5,
|
| 398 |
-
maximum=30,
|
| 399 |
-
value=10,
|
| 400 |
-
step=1,
|
| 401 |
-
label="Duration (seconds)"
|
| 402 |
-
)
|
| 403 |
-
guidance_scale = gr.Slider(
|
| 404 |
-
minimum=1.0,
|
| 405 |
-
maximum=10.0,
|
| 406 |
-
value=3.0,
|
| 407 |
-
step=0.5,
|
| 408 |
-
label="Guidance Scale",
|
| 409 |
-
info="Higher values follow prompt more closely"
|
| 410 |
-
)
|
| 411 |
-
|
| 412 |
-
generate_btn = gr.Button("🎵 Generate Music", variant="primary", size="lg")
|
| 413 |
-
|
| 414 |
-
with gr.Column():
|
| 415 |
-
generation_info = gr.Markdown("Ready to generate music variants with cost comparison vs original model")
|
| 416 |
-
|
| 417 |
-
with gr.Row():
|
| 418 |
-
audio_output1 = gr.Audio(label="Variant 1", type="numpy")
|
| 419 |
-
audio_output2 = gr.Audio(label="Variant 2", type="numpy")
|
| 420 |
-
|
| 421 |
-
with gr.Row():
|
| 422 |
-
audio_output3 = gr.Audio(label="Variant 3", type="numpy")
|
| 423 |
-
audio_output4 = gr.Audio(label="Variant 4", type="numpy")
|
| 424 |
-
|
| 425 |
-
with gr.Accordion("Tips", open=False):
|
| 426 |
-
gr.Markdown("""
|
| 427 |
-
- Be specific in your descriptions (e.g., "slow blues guitar with harmonica")
|
| 428 |
-
- Higher guidance scale = follows prompt more closely
|
| 429 |
-
- Lower guidance scale = more creative/varied results
|
| 430 |
-
- Duration is limited to 30 seconds for faster generation
|
| 431 |
-
""")
|
| 432 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 433 |
|
| 434 |
def generate_simple(text_prompt, duration, guidance_scale):
|
| 435 |
return generate_music_batch(text_prompt, duration, guidance_scale, "compressed")
|
| 436 |
|
| 437 |
-
|
| 438 |
generate_btn.click(
|
| 439 |
fn=generate_simple,
|
| 440 |
inputs=[text_input, duration, guidance_scale],
|
|
@@ -460,7 +453,12 @@ with gr.Blocks(title="MusicGen Large - Music Generation") as demo:
|
|
| 460 |
gr.Markdown("---")
|
| 461 |
gr.Markdown("""
|
| 462 |
<div style="text-align: center; color: #666; font-size: 12px; margin-top: 2rem;">
|
| 463 |
-
<strong>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 464 |
• The model is not able to generate realistic vocals.<br>
|
| 465 |
• The model has been trained with English descriptions and will not perform as well in other languages.<br>
|
| 466 |
• The model does not perform equally well for all music styles and cultures.<br>
|
|
|
|
| 13 |
from elastic_models.transformers import MusicgenForConditionalGeneration
|
| 14 |
|
| 15 |
MODEL_CONFIG = {
|
| 16 |
+
'cost_per_hour': 1.8, # $1.8 per hour on L40S
|
| 17 |
+
'cost_savings_1000h': {
|
| 18 |
+
'savings_dollars': 8.4, # $8.4 saved per 1000 hours
|
| 19 |
+
'savings_percent': 74.9, # 74.9% savings
|
| 20 |
+
'compressed_cost': 2.8, # $2.8 for compressed
|
| 21 |
+
'original_cost': 11.3, # $11.3 for original
|
| 22 |
+
},
|
| 23 |
+
'batch_mode': False
|
| 24 |
}
|
| 25 |
|
| 26 |
original_time_cache = {"original_time": 22.57}
|
|
|
|
| 263 |
}
|
| 264 |
|
| 265 |
|
| 266 |
+
def get_fixed_savings_message():
|
| 267 |
+
config = MODEL_CONFIG['cost_savings_1000h']
|
| 268 |
+
return f"💰 **Cost Savings on L40S (1000h)**: ${config['savings_dollars']:.1f}" \
|
| 269 |
+
f" ({config['savings_percent']:.1f}%) - Compressed: ${config['compressed_cost']:.1f} " \
|
| 270 |
+
f"vs Original: ${config['original_cost']:.1f}"
|
| 271 |
+
|
| 272 |
+
|
| 273 |
def get_cache_key(prompt, duration, guidance_scale):
|
| 274 |
return f"{hash(prompt)}_{duration}_{guidance_scale}"
|
| 275 |
|
|
|
|
| 280 |
generator, processor = load_model()
|
| 281 |
model_name = "Compressed (S)"
|
| 282 |
|
| 283 |
+
print(f"[GENERATION] Starting generation using {model_name} model...")
|
| 284 |
print(f"[GENERATION] Prompt: '{text_prompt}'")
|
| 285 |
print(f"[GENERATION] Duration: {duration}s")
|
| 286 |
print(f"[GENERATION] Guidance scale: {guidance_scale}")
|
| 287 |
+
print(f"[GENERATION] Batch mode: {MODEL_CONFIG['batch_mode']}")
|
| 288 |
|
| 289 |
cleanup_gpu()
|
| 290 |
set_seed(42)
|
|
|
|
| 300 |
'cache_implementation': 'paged',
|
| 301 |
}
|
| 302 |
|
| 303 |
+
batch_size = 4 if MODEL_CONFIG['batch_mode'] else 1
|
| 304 |
+
prompts = [text_prompt] * batch_size
|
| 305 |
+
|
| 306 |
start_time = time.time()
|
| 307 |
outputs = generator(
|
| 308 |
prompts,
|
| 309 |
+
batch_size=batch_size,
|
| 310 |
generate_kwargs=generation_params
|
| 311 |
)
|
| 312 |
generation_time = time.time() - start_time
|
| 313 |
|
| 314 |
+
print(f"[GENERATION] Generation completed in {generation_time:.2f}s")
|
| 315 |
|
| 316 |
audio_variants = []
|
| 317 |
sample_rate = outputs[0]['sampling_rate']
|
| 318 |
+
|
| 319 |
for i, output in enumerate(outputs):
|
| 320 |
audio_data = output['audio']
|
| 321 |
+
|
| 322 |
print(f"[GENERATION] Processing variant {i + 1} audio shape: {audio_data.shape}")
|
| 323 |
+
|
| 324 |
if hasattr(audio_data, 'cpu'):
|
| 325 |
audio_data = audio_data.cpu().numpy()
|
| 326 |
|
| 327 |
if len(audio_data.shape) == 3:
|
| 328 |
audio_data = audio_data[0]
|
| 329 |
+
|
| 330 |
if len(audio_data.shape) == 2:
|
| 331 |
if audio_data.shape[0] < audio_data.shape[1]:
|
| 332 |
audio_data = audio_data.T
|
|
|
|
| 334 |
audio_data = audio_data[:, 0]
|
| 335 |
else:
|
| 336 |
audio_data = audio_data.flatten()
|
| 337 |
+
|
| 338 |
audio_data = audio_data.flatten()
|
| 339 |
+
|
| 340 |
max_val = np.max(np.abs(audio_data))
|
| 341 |
if max_val > 0:
|
| 342 |
audio_data = audio_data / max_val * 0.95
|
| 343 |
+
|
| 344 |
audio_data = (audio_data * 32767).astype(np.int16)
|
| 345 |
audio_variants.append((sample_rate, audio_data))
|
| 346 |
+
|
| 347 |
print(f"[GENERATION] Variant {i + 1} final shape: {audio_data.shape}")
|
| 348 |
|
| 349 |
+
while len(audio_variants) < 4:
|
| 350 |
+
audio_variants.append(None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
|
| 352 |
+
savings_message = get_fixed_savings_message()
|
| 353 |
+
|
| 354 |
+
variants_text = "4 variants" if MODEL_CONFIG['batch_mode'] else "1 variant"
|
| 355 |
+
generation_info = f"✅ Generated {variants_text} in {generation_time:.2f}s\n{savings_message}"
|
| 356 |
+
|
| 357 |
return audio_variants[0], audio_variants[1], audio_variants[2], audio_variants[3], generation_info
|
| 358 |
|
| 359 |
except Exception as e:
|
|
|
|
| 363 |
return None, None, None, None, error_msg
|
| 364 |
|
| 365 |
|
| 366 |
+
with gr.Blocks(title="MusicGen Large - Music Generation", theme=gr.themes.Soft()) as demo:
|
| 367 |
gr.Markdown("# 🎵 MusicGen Large Music Generator")
|
| 368 |
+
|
| 369 |
gr.Markdown(
|
| 370 |
+
f"Generate music from text descriptions using Facebook's MusicGen "
|
| 371 |
+
f"Large model accelerated by TheStage for 2.3x faster performance.")
|
| 372 |
+
|
| 373 |
+
with gr.Column():
|
| 374 |
+
text_input = gr.Textbox(
|
| 375 |
+
label="Music Description",
|
| 376 |
+
placeholder="Enter a description of the music you want to generate",
|
| 377 |
+
lines=3,
|
| 378 |
+
value="A groovy funk bassline with a tight drum beat"
|
| 379 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 380 |
|
| 381 |
+
with gr.Row():
|
| 382 |
+
duration = gr.Slider(
|
| 383 |
+
minimum=5,
|
| 384 |
+
maximum=30,
|
| 385 |
+
value=10,
|
| 386 |
+
step=1,
|
| 387 |
+
label="Duration (seconds)"
|
| 388 |
+
)
|
| 389 |
+
guidance_scale = gr.Slider(
|
| 390 |
+
minimum=1.0,
|
| 391 |
+
maximum=10.0,
|
| 392 |
+
value=3.0,
|
| 393 |
+
step=0.5,
|
| 394 |
+
label="Guidance Scale",
|
| 395 |
+
info="Higher values follow prompt more closely"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
generate_btn = gr.Button("🎵 Generate Music", variant="primary", size="lg")
|
| 399 |
+
|
| 400 |
+
generation_info = gr.Markdown("Ready to generate music with elastic acceleration")
|
| 401 |
+
|
| 402 |
+
audio_section_title = "### Generated Music" + (f" ({4 if MODEL_CONFIG['batch_mode'] else 1} variant{'s' if MODEL_CONFIG['batch_mode'] else ''})")
|
| 403 |
+
gr.Markdown(audio_section_title)
|
| 404 |
+
|
| 405 |
+
with gr.Row():
|
| 406 |
+
audio_output1 = gr.Audio(label="Variant 1", type="numpy")
|
| 407 |
+
audio_output2 = gr.Audio(label="Variant 2", type="numpy", visible=MODEL_CONFIG['batch_mode'])
|
| 408 |
+
|
| 409 |
+
with gr.Row():
|
| 410 |
+
audio_output3 = gr.Audio(label="Variant 3", type="numpy", visible=MODEL_CONFIG['batch_mode'])
|
| 411 |
+
audio_output4 = gr.Audio(label="Variant 4", type="numpy", visible=MODEL_CONFIG['batch_mode'])
|
| 412 |
+
|
| 413 |
+
savings_banner = gr.Markdown(get_fixed_savings_message())
|
| 414 |
+
|
| 415 |
+
with gr.Accordion("💡 Tips & Information", open=False):
|
| 416 |
+
gr.Markdown(f"""
|
| 417 |
+
**Generation Tips:**
|
| 418 |
+
- Be specific in your descriptions (e.g., "slow blues guitar with harmonica")
|
| 419 |
+
- Higher guidance scale = follows prompt more closely
|
| 420 |
+
- Lower guidance scale = more creative/varied results
|
| 421 |
+
- Duration is limited to 30 seconds for faster generation
|
| 422 |
+
|
| 423 |
+
**Performance:**
|
| 424 |
+
- Accelerated by TheStage elastic compression
|
| 425 |
+
- L40S GPU pricing: $1.8/hour
|
| 426 |
+
""")
|
| 427 |
|
| 428 |
def generate_simple(text_prompt, duration, guidance_scale):
|
| 429 |
return generate_music_batch(text_prompt, duration, guidance_scale, "compressed")
|
| 430 |
|
|
|
|
| 431 |
generate_btn.click(
|
| 432 |
fn=generate_simple,
|
| 433 |
inputs=[text_input, duration, guidance_scale],
|
|
|
|
| 453 |
gr.Markdown("---")
|
| 454 |
gr.Markdown("""
|
| 455 |
<div style="text-align: center; color: #666; font-size: 12px; margin-top: 2rem;">
|
| 456 |
+
<strong>TheStage Elastic Acceleration:</strong><br>
|
| 457 |
+
• 2.3x faster generation vs original MusicGen model<br>
|
| 458 |
+
• Benchmarked on L40S GPU @ $1.8/hour pricing<br>
|
| 459 |
+
• Elastic compression maintains audio quality while reducing compute time<br>
|
| 460 |
+
|
| 461 |
+
<strong>Model Limitations:</strong><br>
|
| 462 |
• The model is not able to generate realistic vocals.<br>
|
| 463 |
• The model has been trained with English descriptions and will not perform as well in other languages.<br>
|
| 464 |
• The model does not perform equally well for all music styles and cultures.<br>
|