Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,234 +1,314 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import
|
4 |
-
|
5 |
-
from typing import List
|
6 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
import gradio as gr
|
9 |
import torch
|
10 |
-
from
|
11 |
-
from transformers import
|
12 |
-
from
|
13 |
-
from
|
14 |
import numpy as np
|
15 |
-
import
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
DATASET_ID = f"{HF_USERNAME}/rag-embeddings" # Dataset repo name
|
22 |
-
MODEL_ID = f"{HF_USERNAME}/my-test-model" # Model repo name
|
23 |
-
API_TOKEN = os.getenv("HF_TOKEN") # Read from environment variable
|
24 |
-
|
25 |
-
if not HF_USERNAME:
|
26 |
-
raise ValueError("Please set the HF_USERNAME environment variable with your Hugging Face username.")
|
27 |
-
if not API_TOKEN:
|
28 |
-
raise ValueError("Please set the HF_TOKEN environment variable with your Hugging Face API token.")
|
29 |
-
|
30 |
-
# --- Helper Functions ---
|
31 |
-
def get_text_from_files(file_paths):
|
32 |
-
all_text = []
|
33 |
-
for filepath in file_paths:
|
34 |
-
try:
|
35 |
-
with open(filepath.name, "r", encoding="utf-8") as file:
|
36 |
-
all_text.append(file.read())
|
37 |
-
except Exception as e:
|
38 |
-
print(f"Error reading file: {file.name} with error: {e}. Skipping file.")
|
39 |
-
return all_text
|
40 |
-
|
41 |
-
def get_embeddings(texts, model_id="sentence-transformers/all-mpnet-base-v2"):
|
42 |
try:
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
except Exception as e:
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
def get_llm_response(query, context, model_id="HuggingFaceH4/zephyr-7b-beta"):
|
51 |
try:
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
)
|
69 |
-
return tokenizer.decode(output[0]["generated_text"], skip_special_tokens=True)
|
70 |
|
71 |
except Exception as e:
|
72 |
-
|
73 |
-
return f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
|
76 |
-
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
except Exception as e:
|
83 |
-
return f"Couldn't find the embeddings on the Hub! Did you save them before? {str(e)}"
|
84 |
|
85 |
-
|
86 |
-
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
all_similarities.append(sim.item())
|
93 |
-
except Exception as e:
|
94 |
-
print (f"Error calculating similarity {e} skipping text entry")
|
95 |
|
96 |
-
|
97 |
-
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
@spaces.GPU
|
101 |
-
def rag_chain(question,files):
|
102 |
-
# generate embedding for user input.
|
103 |
-
|
104 |
-
if files is not None:
|
105 |
-
texts = get_text_from_files(files)
|
106 |
-
if texts:
|
107 |
-
embeddings = get_embeddings(texts)
|
108 |
-
if embeddings:
|
109 |
-
upload_embeddings_to_hub(texts, embeddings, dataset_id=DATASET_ID)
|
110 |
-
else:
|
111 |
-
return "There was an error uploading the dataset."
|
112 |
-
|
113 |
-
|
114 |
-
input_embedding = get_embeddings(texts=[question])
|
115 |
-
# Get most relevant text:
|
116 |
-
if input_embedding:
|
117 |
-
context = fetch_from_store(input_embedding[0], dataset_id=DATASET_ID)
|
118 |
-
if context:
|
119 |
-
#Get the final output
|
120 |
-
output = get_llm_response(question,context)
|
121 |
-
return format_output(output)
|
122 |
-
else:
|
123 |
-
return "There was an error. Couldn't fetch a correct context. Is there embeddings in the Hub?"
|
124 |
-
else:
|
125 |
-
return "There was an error generating the embeddings. Try again"
|
126 |
-
|
127 |
-
|
128 |
-
# --- Upload embedding to the Hub (only run one time) ---
|
129 |
-
def upload_embeddings_to_hub(texts, embeddings, dataset_id):
|
130 |
-
api = HfApi(token=API_TOKEN)
|
131 |
-
try:
|
132 |
-
create_repo(repo_id=dataset_id, repo_type="dataset", private=False)
|
133 |
-
print(f"Dataset repo {dataset_id} created successfully!")
|
134 |
except Exception as e:
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
)
|
152 |
-
print("Finished embeddings upload")
|
153 |
-
|
154 |
-
def reduce_dimension_pca(embeddings, n_components=2):
|
155 |
-
pca = PCA(n_components=n_components)
|
156 |
-
reduced_embeddings = pca.fit_transform(np.array(embeddings))
|
157 |
-
return reduced_embeddings
|
158 |
-
|
159 |
-
def reduce_dimension_tsne(embeddings, n_components=2, perplexity = 30, n_iter = 300):
|
160 |
-
tsne = TSNE(n_components=n_components, perplexity = perplexity, n_iter = n_iter, random_state=42)
|
161 |
-
reduced_embeddings = tsne.fit_transform(np.array(embeddings))
|
162 |
-
return reduced_embeddings
|
163 |
-
|
164 |
-
def get_plotly_plot(texts, embeddings, method='PCA'):
|
165 |
-
if method == 'PCA':
|
166 |
-
reduced_embeddings = reduce_dimension_pca(embeddings)
|
167 |
-
elif method == 'TSNE':
|
168 |
-
reduced_embeddings = reduce_dimension_tsne(embeddings)
|
169 |
-
|
170 |
-
fig = go.Figure(data=[go.Scatter(
|
171 |
-
x=reduced_embeddings[:, 0],
|
172 |
-
y=reduced_embeddings[:, 1],
|
173 |
-
mode='markers+text',
|
174 |
-
text=texts,
|
175 |
-
textposition="bottom center",
|
176 |
-
marker=dict(size=10,
|
177 |
-
color=list(range(len(texts))),
|
178 |
-
colorscale='Viridis',
|
179 |
-
showscale=True,
|
180 |
-
)
|
181 |
-
)])
|
182 |
-
|
183 |
-
fig.update_layout(title=f'Document Embeddings Visualization using {method}')
|
184 |
-
return fig
|
185 |
|
186 |
@spaces.GPU
|
187 |
-
def
|
188 |
-
|
189 |
-
|
|
|
190 |
|
191 |
try:
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
except Exception as e:
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import gradio as gr
|
3 |
+
import logging
|
4 |
+
import traceback
|
|
|
5 |
import spaces
|
6 |
+
from typing import Optional, List
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from datetime import datetime
|
9 |
+
from pathlib import Path
|
10 |
+
import gc
|
11 |
|
|
|
12 |
import torch
|
13 |
+
from torch.cuda.amp import autocast
|
14 |
+
from transformers import AutoModel, AutoTokenizer
|
15 |
+
from sentence_transformers import SentenceTransformer
|
16 |
+
from charset_normalizer import from_bytes
|
17 |
import numpy as np
|
18 |
+
import requests
|
19 |
+
|
20 |
+
# Custom Exception Class
|
21 |
+
class GPUQuotaExceededError(Exception):
|
22 |
+
pass
|
23 |
+
|
24 |
+
# Constants
|
25 |
+
EMBEDDING_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
26 |
+
CHUNK_SIZE = 500
|
27 |
+
BATCH_SIZE = 32
|
28 |
+
CACHE_DIR = os.getenv("CACHE_DIR", "/tmp/cache")
|
29 |
+
PERSISTENT_PATH = os.getenv("PERSISTENT_PATH", "/data")
|
30 |
+
|
31 |
+
# Create directories
|
32 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
33 |
+
os.makedirs(PERSISTENT_PATH, exist_ok=True)
|
34 |
+
|
35 |
+
# Logging Setup
|
36 |
+
LOG_DIR = os.getenv("LOG_DIR", "/data/logs")
|
37 |
+
os.makedirs(LOG_DIR, exist_ok=True)
|
38 |
+
LOG_FILE = Path(LOG_DIR) / "app.log"
|
39 |
+
|
40 |
+
logging.basicConfig(
|
41 |
+
filename=str(LOG_FILE),
|
42 |
+
level=logging.INFO,
|
43 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
44 |
+
)
|
45 |
+
logger = logging.getLogger(__name__)
|
46 |
+
|
47 |
+
# Model initialization
|
48 |
+
model = None
|
49 |
+
|
50 |
+
def initialize_model():
|
51 |
+
global model
|
52 |
+
try:
|
53 |
+
if model is None:
|
54 |
+
model = SentenceTransformer(EMBEDDING_MODEL_NAME, cache_folder=CACHE_DIR)
|
55 |
+
logger.info(f"Initialized model: {EMBEDDING_MODEL_NAME}")
|
56 |
+
return True
|
57 |
+
except requests.exceptions.ConnectionError as e:
|
58 |
+
logger.error(f"Connection error during model download: {str(e)}\n{traceback.format_exc()}")
|
59 |
+
return False
|
60 |
+
except Exception as e:
|
61 |
+
logger.error(f"Model initialization failed: {str(e)}\n{traceback.format_exc()}")
|
62 |
+
return False
|
63 |
|
64 |
+
@spaces.GPU
|
65 |
+
def handle_gpu_operation(func):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
try:
|
67 |
+
start_time = datetime.now()
|
68 |
+
with autocast(enabled=torch.cuda.is_available()):
|
69 |
+
result = func()
|
70 |
+
end_time = datetime.now()
|
71 |
+
duration = (end_time - start_time).total_seconds()
|
72 |
+
logger.info(f"GPU operation completed in {duration:.2f}s")
|
73 |
+
return result
|
74 |
+
except RuntimeError as e:
|
75 |
+
if "CUDA out of memory" in str(e):
|
76 |
+
torch.cuda.empty_cache()
|
77 |
+
logger.error(f"GPU memory error: {str(e)}")
|
78 |
+
raise GPUQuotaExceededError("GPU memory limit exceeded. Please try with a smaller batch.")
|
79 |
+
else:
|
80 |
+
logger.error(f"GPU runtime error: {str(e)}")
|
81 |
+
raise
|
82 |
except Exception as e:
|
83 |
+
if "quota exceeded" in str(e).lower():
|
84 |
+
logger.error(f"GPU quota exceeded: {str(e)}")
|
85 |
+
raise GPUQuotaExceededError("GPU quota exceeded. Please wait a few minutes before trying again.")
|
86 |
+
else:
|
87 |
+
logger.error(f"Unexpected GPU error: {str(e)}")
|
88 |
+
raise
|
89 |
+
|
90 |
+
def get_model():
|
91 |
+
global model
|
92 |
+
if model is None:
|
93 |
+
if torch.cuda.is_available():
|
94 |
+
initialize_model()
|
95 |
+
else:
|
96 |
+
logger.warning("Attempted to initialize model outside GPU context, deferring.")
|
97 |
+
return None
|
98 |
+
return model
|
99 |
+
|
100 |
+
@spaces.GPU
|
101 |
+
def process_files(files):
|
102 |
+
if not files:
|
103 |
+
return "Please upload one or more .txt files.", "", ""
|
104 |
|
|
|
105 |
try:
|
106 |
+
if not initialize_model():
|
107 |
+
return "Failed to initialize the model. Please try again.", "", ""
|
108 |
+
|
109 |
+
valid_files = [f for f in files if f.name.lower().endswith('.txt')]
|
110 |
+
if not valid_files:
|
111 |
+
return "No .txt files found in upload. Please ensure you upload .txt files.", "", ""
|
112 |
+
|
113 |
+
all_chunks = []
|
114 |
+
processed_files = 0
|
115 |
+
|
116 |
+
for file in valid_files:
|
117 |
+
try:
|
118 |
+
with open(file.name, 'rb') as f:
|
119 |
+
content = f.read()
|
120 |
+
detected_encoding = from_bytes(content).best().encoding
|
121 |
+
decoded_content = content.decode(detected_encoding, errors='ignore')
|
122 |
+
|
123 |
+
chunks = [decoded_content[i:i+CHUNK_SIZE] for i in range(0, len(decoded_content), CHUNK_SIZE)]
|
124 |
+
all_chunks.extend(chunks)
|
125 |
+
processed_files += 1
|
126 |
+
logger.info(f"Processed file: {file.name}")
|
127 |
+
except Exception as e:
|
128 |
+
logger.error(f"Error processing file {file.name}: {str(e)}")
|
129 |
+
|
130 |
+
if not all_chunks:
|
131 |
+
return "No valid content found in the uploaded .txt files.", "", ""
|
132 |
+
|
133 |
+
# Generate embeddings in batches
|
134 |
+
all_embeddings = []
|
135 |
+
for i in range(0, len(all_chunks), BATCH_SIZE):
|
136 |
+
batch = all_chunks[i:i+BATCH_SIZE]
|
137 |
+
embeddings = handle_gpu_operation(lambda: get_model().encode(batch))
|
138 |
+
all_embeddings.extend(embeddings)
|
139 |
+
|
140 |
+
# Save results
|
141 |
+
np.save(f"{PERSISTENT_PATH}/embeddings.npy", np.array(all_embeddings))
|
142 |
+
|
143 |
+
with open(f"{PERSISTENT_PATH}/chunks.txt", "w", encoding="utf-8") as f:
|
144 |
+
for chunk in all_chunks:
|
145 |
+
f.write(chunk + "\n===CHUNK_SEPARATOR===\n")
|
146 |
+
|
147 |
+
return (
|
148 |
+
f"Successfully processed {processed_files} files. Generated {len(all_embeddings)} embeddings from {len(all_chunks)} chunks.",
|
149 |
+
"",
|
150 |
+
""
|
151 |
)
|
|
|
152 |
|
153 |
except Exception as e:
|
154 |
+
logger.error(f"Processing failed: {str(e)}")
|
155 |
+
return f"Error processing files: {str(e)}", "", ""
|
156 |
+
|
157 |
+
@spaces.GPU
|
158 |
+
def semantic_search(query, top_k=5):
|
159 |
+
global model
|
160 |
+
if model is None: # Check if model is initialized
|
161 |
+
if not initialize_model(): # Initialize only if needed and within GPU context
|
162 |
+
return "Model initialization failed. Please try again."
|
163 |
|
164 |
+
try:
|
165 |
+
# Load saved embeddings
|
166 |
+
stored_embeddings = np.load(f"{PERSISTENT_PATH}/embeddings.npy")
|
167 |
|
168 |
+
# Load stored chunks
|
169 |
+
with open(f"{PERSISTENT_PATH}/chunks.txt", "r", encoding="utf-8") as f:
|
170 |
+
chunks = f.read().split("\n===CHUNK_SEPARATOR===\n")
|
171 |
+
chunks = [c for c in chunks if c.strip()] # Remove empty chunks
|
|
|
|
|
172 |
|
173 |
+
# Get query embedding
|
174 |
+
query_embedding = handle_gpu_operation(lambda: get_model().encode([query]))[0] # Use get_model() to get the model
|
175 |
|
176 |
+
# Calculate similarities
|
177 |
+
similarities = np.dot(stored_embeddings, query_embedding) / (
|
178 |
+
np.linalg.norm(stored_embeddings, axis=1) * np.linalg.norm(query_embedding)
|
179 |
+
)
|
|
|
|
|
|
|
180 |
|
181 |
+
# Get top results
|
182 |
+
top_indices = np.argsort(similarities)[-top_k:][::-1]
|
183 |
|
184 |
+
# Format results
|
185 |
+
results = []
|
186 |
+
for idx in top_indices:
|
187 |
+
results.append(f"""
|
188 |
+
Similarity: {similarities[idx]:.3f}
|
189 |
+
Content: {chunks[idx]}
|
190 |
+
-------------------
|
191 |
+
""")
|
192 |
+
|
193 |
+
return "\n".join(results)
|
194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
except Exception as e:
|
196 |
+
logger.error(f"Search error: {str(e)}")
|
197 |
+
return f"Search error occurred: {str(e)}"
|
198 |
+
|
199 |
+
def search_and_format(query, num_results):
|
200 |
+
if not query.strip():
|
201 |
+
return "Please enter a search query"
|
202 |
+
return semantic_search(query, top_k=num_results)
|
203 |
+
|
204 |
+
def download_results(text):
|
205 |
+
if not text:
|
206 |
+
return None
|
207 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
208 |
+
filename = f"search_results_{timestamp}.txt"
|
209 |
+
with open(filename, "w", encoding="utf-8") as f:
|
210 |
+
f.write(text)
|
211 |
+
return filename
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
@spaces.GPU
|
214 |
+
def safe_generate_embedding(text):
|
215 |
+
global model
|
216 |
+
if model is None: # Check if model is initialized
|
217 |
+
initialize_model() # Initialize only if needed and within GPU context
|
218 |
|
219 |
try:
|
220 |
+
embedding = handle_gpu_operation(
|
221 |
+
lambda: get_model().encode([text])[0].tolist() # Use get_model() to get the model
|
222 |
+
)
|
223 |
+
return embedding, "", False
|
224 |
+
except GPUQuotaExceededError as e:
|
225 |
+
error_msg = str(e)
|
226 |
+
logger.error(error_msg)
|
227 |
+
return "", error_msg, True
|
228 |
except Exception as e:
|
229 |
+
error_msg = f"Error generating embedding: {str(e)}"
|
230 |
+
logger.error(error_msg)
|
231 |
+
return "", error_msg, True
|
232 |
+
|
233 |
+
def download_embeddings():
|
234 |
+
embeddings_path = f"{PERSISTENT_PATH}/embeddings.npy"
|
235 |
+
if not os.path.exists(embeddings_path):
|
236 |
+
return None
|
237 |
+
return embeddings_path
|
238 |
+
|
239 |
+
def create_gradio_interface():
|
240 |
+
with gr.Blocks() as demo:
|
241 |
+
gr.Markdown("## Text Chunk Embeddings Generator")
|
242 |
+
|
243 |
+
error_box = gr.Textbox(visible=False, label="Status/Error Messages")
|
244 |
+
|
245 |
+
with gr.Row():
|
246 |
+
file_input = gr.File(
|
247 |
+
label="Upload Text Files",
|
248 |
+
file_count="multiple",
|
249 |
+
file_types=[".txt"]
|
250 |
+
)
|
251 |
+
|
252 |
+
process_button = gr.Button("Generate Embeddings")
|
253 |
+
output_text = gr.Textbox(label="Status")
|
254 |
+
|
255 |
+
with gr.Tab("Search"):
|
256 |
+
query_input = gr.Textbox(
|
257 |
+
label="Enter your search query",
|
258 |
+
placeholder="Enter text to search through your documents..."
|
259 |
+
)
|
260 |
+
top_k = gr.Slider(
|
261 |
+
minimum=1,
|
262 |
+
maximum=20,
|
263 |
+
value=5,
|
264 |
+
step=1,
|
265 |
+
label="Number of results to return"
|
266 |
+
)
|
267 |
+
search_button = gr.Button("🔍 Search")
|
268 |
+
results_output = gr.Textbox(
|
269 |
+
label="Search Results",
|
270 |
+
lines=10,
|
271 |
+
show_copy_button=True
|
272 |
+
)
|
273 |
+
download_button = gr.Button("⬇️ Download Results")
|
274 |
+
|
275 |
+
search_button.click(
|
276 |
+
fn=search_and_format,
|
277 |
+
inputs=[query_input, top_k],
|
278 |
+
outputs=results_output
|
279 |
+
)
|
280 |
+
|
281 |
+
download_button.click(
|
282 |
+
fn=download_results,
|
283 |
+
inputs=[results_output],
|
284 |
+
outputs=[gr.File(label="Download Search Results")]
|
285 |
+
)
|
286 |
+
|
287 |
+
with gr.Tab("Inspect Embeddings"):
|
288 |
+
embed_input = gr.Textbox(label="Enter Text for Embedding")
|
289 |
+
embed_button = gr.Button("Generate Embedding")
|
290 |
+
embed_output = gr.Textbox(label="Embedding Vector", lines=5)
|
291 |
+
|
292 |
+
embed_button.click(
|
293 |
+
safe_generate_embedding,
|
294 |
+
inputs=[embed_input],
|
295 |
+
outputs=[embed_output, error_box, error_box]
|
296 |
+
)
|
297 |
+
|
298 |
+
download_embeddings_button = gr.Button("⬇️ Download Embeddings")
|
299 |
+
download_embeddings_button.click(
|
300 |
+
fn=download_embeddings,
|
301 |
+
outputs=[gr.File(label="Download Embeddings")]
|
302 |
+
)
|
303 |
+
|
304 |
+
process_button.click(
|
305 |
+
process_files,
|
306 |
+
inputs=[file_input],
|
307 |
+
outputs=[output_text, error_box, error_box]
|
308 |
+
)
|
309 |
+
|
310 |
+
return demo
|
311 |
+
|
312 |
+
if __name__ == "__main__":
|
313 |
+
demo = create_gradio_interface()
|
314 |
+
demo.launch(server_name="0.0.0.0")
|