Spaces:
Sleeping
Sleeping
Commit
·
9c81028
1
Parent(s):
8a3af63
Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,30 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import logging
|
4 |
-
import
|
5 |
-
import spaces
|
6 |
-
from typing import Optional, List
|
7 |
-
from dataclasses import dataclass
|
8 |
-
from datetime import datetime
|
9 |
-
from pathlib import Path
|
10 |
-
import gc
|
11 |
-
import torch
|
12 |
-
from torch.amp import autocast
|
13 |
from transformers import AutoModel, AutoTokenizer
|
14 |
from sentence_transformers import SentenceTransformer
|
15 |
-
import
|
16 |
-
import
|
17 |
-
from
|
18 |
-
import zipfile
|
19 |
-
import tempfile
|
20 |
-
import shutil
|
21 |
-
|
22 |
-
# Custom Exception Class
|
23 |
-
class GPUQuotaExceededError(Exception):
|
24 |
-
pass
|
25 |
|
26 |
# Constants
|
27 |
EMBEDDING_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
# Set Persistent Storage Path
|
32 |
-
PERSISTENT_PATH = os.getenv("PERSISTENT_PATH", "/data")
|
33 |
-
os.makedirs(PERSISTENT_PATH, exist_ok=True, mode=0o777)
|
34 |
|
35 |
-
#
|
36 |
-
|
37 |
-
os.makedirs(
|
38 |
-
|
39 |
-
OUTPUTS_DIR = os.path.join(PERSISTENT_PATH, "outputs")
|
40 |
-
os.makedirs(OUTPUTS_DIR, exist_ok=True, mode=0o777)
|
41 |
-
|
42 |
-
NPY_CACHE = os.path.join(PERSISTENT_PATH, "npy_cache")
|
43 |
-
os.makedirs(NPY_CACHE, exist_ok=True, mode=0o777)
|
44 |
-
|
45 |
-
LOG_DIR = os.getenv("LOG_DIR", os.path.join(PERSISTENT_PATH, "logs"))
|
46 |
-
os.makedirs(LOG_DIR, exist_ok=True, mode=0o777)
|
47 |
-
|
48 |
-
# Set Hugging Face cache directory to persistent storage
|
49 |
-
os.environ["HF_HOME"] = os.path.join(PERSISTENT_PATH, ".huggingface")
|
50 |
-
os.makedirs(os.environ["HF_HOME"], exist_ok=True, mode=0o777)
|
51 |
-
|
52 |
-
# Set Hugging Face token
|
53 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
54 |
|
55 |
# Logging Setup
|
|
|
|
|
|
|
|
|
56 |
logging.basicConfig(
|
57 |
-
filename=
|
58 |
level=logging.INFO,
|
59 |
format="%(asctime)s - %(levelname)s - %(message)s",
|
60 |
)
|
@@ -64,230 +34,128 @@ logger = logging.getLogger(__name__)
|
|
64 |
model = None
|
65 |
|
66 |
def initialize_model():
|
67 |
-
"""
|
68 |
-
Initialize the sentence transformer model.
|
69 |
-
Returns:
|
70 |
-
bool: Whether the model was successfully initialized.
|
71 |
-
"""
|
72 |
global model
|
73 |
try:
|
74 |
if model is None:
|
75 |
-
|
76 |
-
os.makedirs(model_cache, exist_ok=True, mode=0o777)
|
77 |
-
# Use the HF_TOKEN to load the model
|
78 |
-
model = SentenceTransformer(EMBEDDING_MODEL_NAME, cache_folder=model_cache, use_auth_token=HF_TOKEN)
|
79 |
logger.info(f"Initialized model: {EMBEDDING_MODEL_NAME}")
|
80 |
return True
|
81 |
-
except requests.exceptions.RequestException as e:
|
82 |
-
logger.error(f"Connection error during model download: {str(e)}\n{traceback.format_exc()}")
|
83 |
-
return False
|
84 |
except Exception as e:
|
85 |
-
logger.error(f"Model initialization failed: {str(e)}
|
86 |
return False
|
87 |
|
88 |
-
@
|
89 |
-
def
|
90 |
-
try:
|
91 |
-
start_time = datetime.now()
|
92 |
-
# Updated autocast usage as per deprecation notice
|
93 |
-
with autocast(device_type='cuda', dtype=torch.float16):
|
94 |
-
result = func()
|
95 |
-
end_time = datetime.now()
|
96 |
-
duration = (end_time - start_time).total_seconds()
|
97 |
-
logger.info(f"GPU operation completed in {duration:.2f}s")
|
98 |
-
return result
|
99 |
-
except RuntimeError as e:
|
100 |
-
if "CUDA out of memory" in str(e):
|
101 |
-
torch.cuda.empty_cache()
|
102 |
-
logger.error(f"GPU memory error: {str(e)}")
|
103 |
-
raise GPUQuotaExceededError("GPU memory limit exceeded. Please try with a smaller batch.")
|
104 |
-
else:
|
105 |
-
logger.error(f"GPU runtime error: {str(e)}")
|
106 |
-
raise
|
107 |
-
except Exception as e:
|
108 |
-
if "quota exceeded" in str(e).lower():
|
109 |
-
logger.error(f"GPU quota exceeded: {str(e)}")
|
110 |
-
raise GPUQuotaExceededError("GPU quota exceeded. Please wait a few minutes before trying again.")
|
111 |
-
else:
|
112 |
-
logger.error(f"Unexpected GPU error: {str(e)}")
|
113 |
-
raise
|
114 |
-
|
115 |
-
def get_model():
|
116 |
global model
|
117 |
-
if model is None:
|
118 |
-
|
119 |
-
initialize_model()
|
120 |
-
else:
|
121 |
-
logger.warning("Attempted to initialize model outside GPU context, deferring.")
|
122 |
-
return None
|
123 |
-
return model
|
124 |
-
|
125 |
-
@spaces.GPU
|
126 |
-
def process_files(files):
|
127 |
-
if not files:
|
128 |
-
return "Please upload one or more.txt files.", ""
|
129 |
|
130 |
try:
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
valid_files = [f for f in files if f.name.lower().endswith('.txt')]
|
135 |
-
if not valid_files:
|
136 |
-
return "No.txt files found. Please upload valid.txt files.", ""
|
137 |
-
|
138 |
-
all_chunks = []
|
139 |
-
processed_files = 0
|
140 |
-
|
141 |
-
for file in valid_files:
|
142 |
-
try:
|
143 |
-
with open(file.name, 'rb') as f:
|
144 |
-
content = f.read()
|
145 |
-
detected_encoding = from_bytes(content).best().encoding
|
146 |
-
decoded_content = content.decode(detected_encoding, errors='ignore')
|
147 |
-
|
148 |
-
# Split content into chunks
|
149 |
-
chunks = [decoded_content[i:i+CHUNK_SIZE] for i in range(0, len(decoded_content), CHUNK_SIZE)]
|
150 |
-
all_chunks.extend(chunks)
|
151 |
-
processed_files += 1
|
152 |
-
logger.info(f"Processed file: {file.name}")
|
153 |
-
except Exception as e:
|
154 |
-
logger.error(f"Error processing file {file.name}: {str(e)}")
|
155 |
-
|
156 |
-
if not all_chunks:
|
157 |
-
return "No valid content found in the uploaded files.", ""
|
158 |
-
|
159 |
-
# Generate embeddings in batches
|
160 |
-
all_embeddings = []
|
161 |
-
for i in range(0, len(all_chunks), BATCH_SIZE):
|
162 |
-
batch = all_chunks[i:i+BATCH_SIZE]
|
163 |
-
if model:
|
164 |
-
embeddings = handle_gpu_operation(lambda: model.encode(batch))
|
165 |
-
all_embeddings.extend(embeddings)
|
166 |
-
else:
|
167 |
-
return "Model not initialized. Please check model initialization.", ""
|
168 |
-
|
169 |
-
# Save results to OUTPUTS_DIR
|
170 |
-
embeddings_path = os.path.join(OUTPUTS_DIR, "embeddings.npy")
|
171 |
-
np.save(embeddings_path, np.array(all_embeddings))
|
172 |
-
chunks_path = os.path.join(OUTPUTS_DIR, "chunks.txt")
|
173 |
-
with open(chunks_path, "w", encoding="utf-8") as f:
|
174 |
-
for chunk in all_chunks:
|
175 |
-
f.write(chunk + "\n===CHUNK_SEPARATOR===\n")
|
176 |
-
|
177 |
-
return (
|
178 |
-
f"Successfully processed {processed_files} files. Generated {len(all_embeddings)} embeddings from {len(all_chunks)} chunks.",
|
179 |
-
""
|
180 |
-
)
|
181 |
-
|
182 |
except Exception as e:
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
@spaces.GPU
|
187 |
-
def semantic_search(query, top_k=5):
|
188 |
-
global model
|
189 |
-
if model is None:
|
190 |
-
return "Model not initialized. Please process files first."
|
191 |
|
|
|
|
|
192 |
try:
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
chunks = [c for c in chunks if c.strip()]
|
200 |
-
|
201 |
-
# Get query embedding
|
202 |
-
query_embedding = model.encode([query])[0]
|
203 |
-
|
204 |
-
# Calculate similarities
|
205 |
-
similarities = np.dot(stored_embeddings, query_embedding) / (
|
206 |
-
np.linalg.norm(stored_embeddings, axis=1) * np.linalg.norm(query_embedding)
|
207 |
-
)
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
-------------------
|
217 |
-
""")
|
218 |
-
return "\n".join(results)
|
219 |
except Exception as e:
|
220 |
-
|
221 |
-
|
|
|
222 |
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
227 |
|
228 |
-
def copy_embeddings_to_workspace():
|
229 |
try:
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
|
|
|
|
236 |
except Exception as e:
|
237 |
-
|
238 |
-
|
|
|
239 |
|
240 |
def create_gradio_interface():
|
241 |
with gr.Blocks() as demo:
|
242 |
-
gr.Markdown("## Text
|
243 |
|
244 |
-
|
|
|
|
|
245 |
|
246 |
with gr.Row():
|
247 |
-
file_input = gr.File(
|
248 |
-
label="Upload Text Files",
|
249 |
-
file_count="multiple",
|
250 |
-
file_types=[".txt"]
|
251 |
-
)
|
252 |
|
253 |
-
|
254 |
-
|
|
|
255 |
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
)
|
261 |
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
)
|
274 |
-
search_button = gr.Button(" Search")
|
275 |
-
results_output = gr.Textbox(
|
276 |
-
label="Search Results",
|
277 |
-
lines=10,
|
278 |
-
show_copy_button=True
|
279 |
-
)
|
280 |
-
search_button.click(
|
281 |
-
fn=search_and_format,
|
282 |
-
inputs=[query_input, top_k_slider],
|
283 |
-
outputs=results_output
|
284 |
-
)
|
285 |
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
291 |
)
|
292 |
|
293 |
return demo
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import logging
|
4 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from transformers import AutoModel, AutoTokenizer
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
+
import torch
|
8 |
+
from torch.cuda.amp import autocast
|
9 |
+
from spaces import GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Constants
|
12 |
EMBEDDING_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
13 |
+
CACHE_DIR = os.getenv("CACHE_DIR", "/tmp/cache")
|
14 |
+
PERSISTENT_PATH = os.getenv("PERSISTENT_PATH", "/tmp/data")
|
15 |
+
HF_TOKEN = "YOUR_HF_TOKEN" # Replace with your Hugging Face token
|
|
|
|
|
|
|
16 |
|
17 |
+
# Create directories
|
18 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
19 |
+
os.makedirs(PERSISTENT_PATH, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# Logging Setup
|
22 |
+
LOG_DIR = os.getenv("LOG_DIR", "/data/logs")
|
23 |
+
os.makedirs(LOG_DIR, exist_ok=True)
|
24 |
+
LOG_FILE = LOG_DIR + "/app.log"
|
25 |
+
|
26 |
logging.basicConfig(
|
27 |
+
filename=LOG_FILE,
|
28 |
level=logging.INFO,
|
29 |
format="%(asctime)s - %(levelname)s - %(message)s",
|
30 |
)
|
|
|
34 |
model = None
|
35 |
|
36 |
def initialize_model():
|
|
|
|
|
|
|
|
|
|
|
37 |
global model
|
38 |
try:
|
39 |
if model is None:
|
40 |
+
model = SentenceTransformer(EMBEDDING_MODEL_NAME, cache_folder=CACHE_DIR, use_auth_token=HF_TOKEN)
|
|
|
|
|
|
|
41 |
logger.info(f"Initialized model: {EMBEDDING_MODEL_NAME}")
|
42 |
return True
|
|
|
|
|
|
|
43 |
except Exception as e:
|
44 |
+
logger.error(f"Model initialization failed: {str(e)}")
|
45 |
return False
|
46 |
|
47 |
+
@GPU()
|
48 |
+
def generate_embedding(text, focus):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
global model
|
50 |
+
if model is None:
|
51 |
+
initialize_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
try:
|
54 |
+
with autocast("cuda"):
|
55 |
+
embedding = model.encode([text])[0].tolist()
|
56 |
+
return embedding, ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
except Exception as e:
|
58 |
+
error_msg = f"Error generating embedding: {str(e)}"
|
59 |
+
logger.error(error_msg)
|
60 |
+
return "", error_msg
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
@GPU()
|
63 |
+
def save_embedding(embedding, name):
|
64 |
try:
|
65 |
+
np.save(f"{PERSISTENT_PATH}/{name}.npy", np.array(embedding))
|
66 |
+
return f"Embedding saved as {name}.npy"
|
67 |
+
except Exception as e:
|
68 |
+
error_msg = f"Error saving embedding: {str(e)}"
|
69 |
+
logger.error(error_msg)
|
70 |
+
return error_msg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
@GPU()
|
73 |
+
def convert_to_json(embedding, name):
|
74 |
+
try:
|
75 |
+
import json
|
76 |
+
with open(f"{PERSISTENT_PATH}/{name}.json", "w") as f:
|
77 |
+
json.dump(embedding, f)
|
78 |
+
return f"Embedding saved as {name}.json"
|
|
|
|
|
|
|
79 |
except Exception as e:
|
80 |
+
error_msg = f"Error converting to JSON: {str(e)}"
|
81 |
+
logger.error(error_msg)
|
82 |
+
return error_msg
|
83 |
|
84 |
+
@GPU()
|
85 |
+
def process_files(files, focus):
|
86 |
+
global model
|
87 |
+
if model is None:
|
88 |
+
initialize_model()
|
89 |
|
|
|
90 |
try:
|
91 |
+
all_embeddings = []
|
92 |
+
for file in files:
|
93 |
+
with open(file.name, 'r') as f:
|
94 |
+
text = f.read()
|
95 |
+
with autocast("cuda"):
|
96 |
+
embedding = model.encode([text])[0].tolist()
|
97 |
+
all_embeddings.append(embedding)
|
98 |
+
return all_embeddings, ""
|
99 |
except Exception as e:
|
100 |
+
error_msg = f"Error processing files: {str(e)}"
|
101 |
+
logger.error(error_msg)
|
102 |
+
return "", error_msg
|
103 |
|
104 |
def create_gradio_interface():
|
105 |
with gr.Blocks() as demo:
|
106 |
+
gr.Markdown("## Text Embedding Generator")
|
107 |
|
108 |
+
with gr.Row():
|
109 |
+
text_input = gr.Textbox(label="Enter Text")
|
110 |
+
focus_input = gr.Textbox(label="Main Focus of Embedding (e.g., company structure, staff positions, etc.)")
|
111 |
|
112 |
with gr.Row():
|
113 |
+
file_input = gr.File(label="Upload Files", file_count="multiple")
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
generate_button = gr.Button("Generate Embedding")
|
116 |
+
embedding_output = gr.Textbox(label="Embedding Vector", lines=5)
|
117 |
+
error_box = gr.Textbox(label="Status/Error Messages")
|
118 |
|
119 |
+
save_name_input = gr.Textbox(label="Save Embedding As")
|
120 |
+
save_button = gr.Button("Save Embedding")
|
121 |
+
save_status = gr.Textbox(label="Save Status")
|
122 |
+
|
123 |
+
convert_button = gr.Button("Convert to JSON")
|
124 |
+
convert_status = gr.Textbox(label="Convert Status")
|
125 |
+
download_button = gr.Button("Download JSON")
|
126 |
+
download_output = gr.File(label="Download JSON")
|
127 |
+
|
128 |
+
process_button = gr.Button("Process Files")
|
129 |
+
process_output = gr.Textbox(label="Processed Files", lines=5)
|
130 |
+
|
131 |
+
generate_button.click(
|
132 |
+
generate_embedding,
|
133 |
+
inputs=[text_input, focus_input],
|
134 |
+
outputs=[embedding_output, error_box]
|
135 |
)
|
136 |
|
137 |
+
save_button.click(
|
138 |
+
save_embedding,
|
139 |
+
inputs=[embedding_output, save_name_input],
|
140 |
+
outputs=[save_status]
|
141 |
+
)
|
142 |
+
|
143 |
+
convert_button.click(
|
144 |
+
convert_to_json,
|
145 |
+
inputs=[embedding_output, save_name_input],
|
146 |
+
outputs=[convert_status]
|
147 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
+
download_button.click(
|
150 |
+
lambda name: f"{PERSISTENT_PATH}/{name}.json",
|
151 |
+
inputs=[save_name_input],
|
152 |
+
outputs=[download_output]
|
153 |
+
)
|
154 |
+
|
155 |
+
process_button.click(
|
156 |
+
process_files,
|
157 |
+
inputs=[file_input, focus_input],
|
158 |
+
outputs=[process_output, error_box]
|
159 |
)
|
160 |
|
161 |
return demo
|