Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,60 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import logging
|
4 |
-
import
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
6 |
import torch
|
7 |
from torch.amp import autocast
|
8 |
-
from
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
# Constants (
|
12 |
EMBEDDING_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
16 |
|
17 |
-
#
|
18 |
-
os.
|
19 |
-
os.makedirs(
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
os.makedirs(LOG_DIR, exist_ok=True)
|
24 |
-
LOG_FILE = LOG_DIR + "/app.log"
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
logging.basicConfig(
|
27 |
-
filename=
|
28 |
level=logging.INFO,
|
29 |
format="%(asctime)s - %(levelname)s - %(message)s",
|
30 |
)
|
@@ -32,25 +62,39 @@ logger = logging.getLogger(__name__)
|
|
32 |
|
33 |
# Model initialization
|
34 |
model = None
|
35 |
-
model_initialization_error = "" # Global variable
|
36 |
|
37 |
def initialize_model():
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
global model, model_initialization_error
|
39 |
try:
|
40 |
if model is None:
|
41 |
-
|
|
|
|
|
|
|
42 |
logger.info(f"Initialized model: {EMBEDDING_MODEL_NAME}")
|
43 |
model_initialization_error = "" # Clear any previous error
|
44 |
return True, "" # Return success and no error message
|
45 |
return True, "" # Already initialized, return success and no error
|
46 |
-
except
|
47 |
-
error_msg = f"
|
|
|
|
|
|
|
|
|
|
|
48 |
logger.error(error_msg)
|
49 |
-
model_initialization_error = error_msg
|
50 |
-
return False, error_msg
|
51 |
|
52 |
|
53 |
-
@GPU
|
54 |
def generate_embedding(text, focus):
|
55 |
global model, model_initialization_error
|
56 |
if model is None:
|
@@ -69,11 +113,11 @@ def generate_embedding(text, focus):
|
|
69 |
logger.error(error_msg)
|
70 |
return "", error_msg
|
71 |
|
72 |
-
@GPU
|
73 |
def save_embedding(embedding_json, name): # Expect JSON string as input from UI
|
74 |
try:
|
75 |
embedding = json.loads(embedding_json) # Parse JSON string back to list
|
76 |
-
filepath = f"{
|
77 |
np.save(filepath, np.array(embedding))
|
78 |
return f"Embedding saved to: {filepath}" # Return filepath in status
|
79 |
except Exception as e:
|
@@ -81,10 +125,10 @@ def save_embedding(embedding_json, name): # Expect JSON string as input from UI
|
|
81 |
logger.error(error_msg)
|
82 |
return error_msg
|
83 |
|
84 |
-
@GPU
|
85 |
def convert_to_json(embedding_json, name): # Expect JSON string as input
|
86 |
try:
|
87 |
-
filepath = f"{
|
88 |
with open(filepath, "w") as f:
|
89 |
f.write(embedding_json) # Directly write the JSON string
|
90 |
return f"Embedding saved as JSON to: {filepath}" # Return filepath in status
|
@@ -93,7 +137,7 @@ def convert_to_json(embedding_json, name): # Expect JSON string as input
|
|
93 |
logger.error(error_msg)
|
94 |
return error_msg
|
95 |
|
96 |
-
@GPU
|
97 |
def process_files(files, focus):
|
98 |
global model, model_initialization_error
|
99 |
if model is None:
|
@@ -106,7 +150,7 @@ def process_files(files, focus):
|
|
106 |
file_statuses = [] # To track status for each file
|
107 |
for file in files:
|
108 |
try:
|
109 |
-
with open(file.name, '
|
110 |
text = f.read()
|
111 |
with torch.amp.autocast('cuda'):
|
112 |
embedding = model.encode([text])[0].tolist()
|
@@ -186,7 +230,7 @@ def create_gradio_interface():
|
|
186 |
)
|
187 |
|
188 |
download_button.click(
|
189 |
-
lambda name: f"{
|
190 |
inputs=[save_name_input],
|
191 |
outputs=[download_output]
|
192 |
)
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import logging
|
4 |
+
import traceback
|
5 |
+
import spaces
|
6 |
+
from typing import Optional, List
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from datetime import datetime
|
9 |
+
from pathlib import Path
|
10 |
+
import gc
|
11 |
import torch
|
12 |
from torch.amp import autocast
|
13 |
+
from transformers import AutoModel, AutoTokenizer
|
14 |
+
from sentence_transformers import SentenceTransformer
|
15 |
+
import numpy as np
|
16 |
+
import requests
|
17 |
+
from charset_normalizer import from_bytes
|
18 |
+
import zipfile
|
19 |
+
import tempfile
|
20 |
+
import shutil
|
21 |
+
|
22 |
+
# Custom Exception Class (Keep this)
|
23 |
+
class GPUQuotaExceededError(Exception):
|
24 |
+
pass
|
25 |
|
26 |
+
# Constants (Modified Persistent Paths and Cache)
|
27 |
EMBEDDING_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
28 |
+
CHUNK_SIZE = 500
|
29 |
+
BATCH_SIZE = 32
|
30 |
+
|
31 |
+
# Set Persistent Storage Path (More Explicit Paths - from Worked Code)
|
32 |
+
PERSISTENT_PATH = os.getenv("PERSISTENT_PATH", "/data") # Keep this as /data for Spaces persistent storage
|
33 |
+
os.makedirs(PERSISTENT_PATH, exist_ok=True, mode=0o777)
|
34 |
|
35 |
+
# Define Subdirectories (More Explicit Paths)
|
36 |
+
TEMP_DIR = os.path.join(PERSISTENT_PATH, "temp")
|
37 |
+
os.makedirs(TEMP_DIR, exist_ok=True, mode=0o777)
|
38 |
|
39 |
+
OUTPUTS_DIR = os.path.join(PERSISTENT_PATH, "outputs")
|
40 |
+
os.makedirs(OUTPUTS_DIR, exist_ok=True, mode=0o777)
|
|
|
|
|
41 |
|
42 |
+
NPY_CACHE = os.path.join(PERSISTENT_PATH, "npy_cache")
|
43 |
+
os.makedirs(NPY_CACHE, exist_ok=True, mode=0o777)
|
44 |
+
|
45 |
+
LOG_DIR = os.getenv("LOG_DIR", os.path.join(PERSISTENT_PATH, "logs"))
|
46 |
+
os.makedirs(LOG_DIR, exist_ok=True, mode=0o777)
|
47 |
+
|
48 |
+
# Set Hugging Face cache directory to persistent storage (From Worked Code - Important!)
|
49 |
+
os.environ["HF_HOME"] = os.path.join(PERSISTENT_PATH, ".huggingface")
|
50 |
+
os.makedirs(os.environ["HF_HOME"], exist_ok=True, mode=0o777)
|
51 |
+
|
52 |
+
# Set Hugging Face token (Keep this - best to use environment variable)
|
53 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
54 |
+
|
55 |
+
# Logging Setup (Keep this - helpful for debugging)
|
56 |
logging.basicConfig(
|
57 |
+
filename=os.path.join(LOG_DIR, "app.log"), # Use os.path.join for log file path
|
58 |
level=logging.INFO,
|
59 |
format="%(asctime)s - %(levelname)s - %(message)s",
|
60 |
)
|
|
|
62 |
|
63 |
# Model initialization
|
64 |
model = None
|
65 |
+
model_initialization_error = "" # Global variable for initialization error
|
66 |
|
67 |
def initialize_model():
|
68 |
+
"""
|
69 |
+
Initialize the sentence transformer model with explicit cache path and error handling.
|
70 |
+
Returns:
|
71 |
+
bool: Whether the model was successfully initialized.
|
72 |
+
str: Error message if initialization failed, otherwise empty string.
|
73 |
+
"""
|
74 |
global model, model_initialization_error
|
75 |
try:
|
76 |
if model is None:
|
77 |
+
model_cache = os.path.join(PERSISTENT_PATH, "models") # Explicit model cache path (from worked code)
|
78 |
+
os.makedirs(model_cache, exist_ok=True, mode=0o777) # Ensure cache directory exists
|
79 |
+
# Use the HF_TOKEN to load the model (as in worked code)
|
80 |
+
model = SentenceTransformer(EMBEDDING_MODEL_NAME, cache_folder=model_cache, use_auth_token=HF_TOKEN)
|
81 |
logger.info(f"Initialized model: {EMBEDDING_MODEL_NAME}")
|
82 |
model_initialization_error = "" # Clear any previous error
|
83 |
return True, "" # Return success and no error message
|
84 |
return True, "" # Already initialized, return success and no error
|
85 |
+
except requests.exceptions.RequestException as e: # Specific network error handling (from worked code)
|
86 |
+
error_msg = f"Connection error during model download: {str(e)}\n{traceback.format_exc()}"
|
87 |
+
logger.error(error_msg)
|
88 |
+
model_initialization_error = error_msg
|
89 |
+
return False, error_msg
|
90 |
+
except Exception as e: # General error handling (from worked code)
|
91 |
+
error_msg = f"Model initialization failed: {str(e)}\n{traceback.format_exc()}"
|
92 |
logger.error(error_msg)
|
93 |
+
model_initialization_error = error_msg
|
94 |
+
return False, error_msg
|
95 |
|
96 |
|
97 |
+
@spaces.GPU
|
98 |
def generate_embedding(text, focus):
|
99 |
global model, model_initialization_error
|
100 |
if model is None:
|
|
|
113 |
logger.error(error_msg)
|
114 |
return "", error_msg
|
115 |
|
116 |
+
@spaces.GPU
|
117 |
def save_embedding(embedding_json, name): # Expect JSON string as input from UI
|
118 |
try:
|
119 |
embedding = json.loads(embedding_json) # Parse JSON string back to list
|
120 |
+
filepath = os.path.join(PERSISTENT_PATH, f"{name}.npy") # Use os.path.join for filepath
|
121 |
np.save(filepath, np.array(embedding))
|
122 |
return f"Embedding saved to: {filepath}" # Return filepath in status
|
123 |
except Exception as e:
|
|
|
125 |
logger.error(error_msg)
|
126 |
return error_msg
|
127 |
|
128 |
+
@spaces.GPU
|
129 |
def convert_to_json(embedding_json, name): # Expect JSON string as input
|
130 |
try:
|
131 |
+
filepath = os.path.join(PERSISTENT_PATH, f"{name}.json") # Use os.path.join for filepath
|
132 |
with open(filepath, "w") as f:
|
133 |
f.write(embedding_json) # Directly write the JSON string
|
134 |
return f"Embedding saved as JSON to: {filepath}" # Return filepath in status
|
|
|
137 |
logger.error(error_msg)
|
138 |
return error_msg
|
139 |
|
140 |
+
@spaces.GPU
|
141 |
def process_files(files, focus):
|
142 |
global model, model_initialization_error
|
143 |
if model is None:
|
|
|
150 |
file_statuses = [] # To track status for each file
|
151 |
for file in files:
|
152 |
try:
|
153 |
+
with open(file.name, 'rb') as f:
|
154 |
text = f.read()
|
155 |
with torch.amp.autocast('cuda'):
|
156 |
embedding = model.encode([text])[0].tolist()
|
|
|
230 |
)
|
231 |
|
232 |
download_button.click(
|
233 |
+
lambda name: os.path.join(PERSISTENT_PATH, f"{name}.json") if name else None, # Handle empty name, use os.path.join
|
234 |
inputs=[save_name_input],
|
235 |
outputs=[download_output]
|
236 |
)
|